全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gauge Theories as Distributions of Affine Defects

DOI: 10.4236/jamp.2025.133051, PP. 1029-1044

Keywords: Gauge Theory, Affine Symmetry, Torsion, Conformal Symmetry, Unitary Symmetry, Inversion Symmetry

Full-Text   Cite this paper   Add to My Lib

Abstract:

Geometric gauge theory provides a mathematical foundation for the most successful innovations in twentieth-century theoretical physics. The theories use symmetry groups, connections on fiber bundles, and concepts of parallel translation and curvature to model basic physics. More specifically, spacetime translations and projective conformal transformations model linear momentum; affine torsion, including torsion trace, models intrinsic angular momentum; conformal dilations model quantum wave mechanics; and unitary symmetry models elementary particles. The present work combines these basic gauge symmetries in a common framework as distributions of discrete defects in affine spaces, where each type of gauge field can be interpreted geometrically as a distribution of discrete defects in a regular lattice. The final section suggests in general terms research programs to search for distributions of discrete defects in regular lattices that underlie gauge theories.

References

[1]  Copernicus, N. (1543) Dē revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres). Johannes Petreius.
[2]  Kepler, J. (1621) Mysterium cosmographicum (The Sacred Mystery of the Cosmos). 2nd Edition
[3]  Bartleby.com
https://www.bartleby.com/297/154.html
[4]  Maxwell, J.C. (1873) A Treatise on Electricity and Magnetism. Clarendon Press.
[5]  Michelson, A.A. and Morley, E.W. (1887) On the Relative Motion of the Earth and the Luminiferous Ether. American Journal of Science, 3, 333-345.
https://doi.org/10.2475/ajs.s3-34.203.333
[6]  Planck, M. (1900) On the Theory of the Energy Distribution Law of the Normal Spectrum. Verhandlungen der Deutschen physikalischen Gesellschaft, 2, 38-45.
[7]  Einstein, A. (1905) On a Heuristic Viewpoint Concerning the Emission and Transformation of Light. Annalen der Physik, 17, 132-148.
https://doi.org/10.1002/andp.19053220607
[8]  Bohr, N. (1913) On the Constitution of Atoms and Molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26, 1-25.
https://doi.org/10.1080/14786441308634955
[9]  Schrödinger, E. (1926) An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review, 28, 1049-1070.
https://doi.org/10.1103/physrev.28.1049
[10]  Dirac, P. (1928) The Quantum Theory of the Electron. Proceedings of the Royal Society A, 117, 610-624.
[11]  Debever, R. (1979) Elie Cartan—Albert Einstein: Letters on Absolute Parallelism 1929-1932. Princeton University Press, 5-13.
[12]  Hubble, E. (1929) A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences, 15, 168-173.
https://doi.org/10.1073/pnas.15.3.168
[13]  Kibble, T.W.B. (1961) Lorentz Invariance and the Gravitational Field. Journal of Mathematical Physics, 2, 212-221.
https://doi.org/10.1063/1.1703702
[14]  SCIAMA, D.W. (1964) The Physical Structure of General Relativity. Reviews of Modern Physics, 36, 463-469.
https://doi.org/10.1103/revmodphys.36.463
[15]  Weyl, H. (1929) Electrons and Gravitation I. Proceedings of the National Academy of Sciences of the United States of America, 15, 323-334.
https://doi.org/10.1073/pnas.15.4.323
[16]  Yang, C.N. and Mills, R.L. (1954) Conservation of Isotopic Spin and Isotopic Gauge Invariance. Physical Review, 96, 191-195.
https://doi.org/10.1103/physrev.96.191
[17]  Struik, D.J. (1988) Lectures on Classical Differential Geometry. 2nd Edition, Dover Publications.
[18]  Singer, I.M. and Thorpe, J, A. (1967) Lecture Notes on Elementary Topology and Geometry. Springer Publishing.
https://doi.org/10.1007/978-1-4615-7347-0
[19]  Bishop, R.L. and Crittenden, R.J. (1964) Geometry of Manifolds. Academic Press.
[20]  Kobayashi, S. and Nomizu, K. (1963) Foundations of Differential Geometry. John Wiley & Sons.
[21]  See for Example.
https://en.wikipedia.org/wiki/Covariance_and_contravariance_of_vectors
[22]  Einstein, A. (1905) Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322, 891-921.
https://users.physics.ox.ac.uk/~rtaylor/teaching/specrel.pdf
https://doi.org/10.1002/andp.19053221004
[23]  Einstein, A. (1915) The Field Equations of Gravitation English Translation.
https://en.wikisource.org/wiki/Translation:The_Field_Equations_of_Gravitation
[24]  Adler, R., Bazin, M. and Schiffer, M. (1975) Introduction to General Relativity. 2nd Edition, McGraw Hill.
[25]  Petti, R.J. (2001) Affine Defects and Gravitation. General Relativity and Gravitation, 33, 163-172.
https://doi.org/10.1023/a:1002005205371
[26]  Cartan É (1922) Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion. Comptes rendus de l'Académie des Sciences, 174, 593-595.
[27]  Sciama, D.W. (1962) On the Analogy between Charge and Spin in General Relativity. Recent Developments in General Relativity, Polish Scientific Publishers, 415-439.
[28]  Adamowicz W (1975) Equivalence between the Einstein-Cartan and General Rela-tivity Theories in the Linear Approximation for a Classical Model of Spin. Bulletin of the Polish Academy of Sciences, Series on Mathematical, Astronomical and Physical Sciences, 23, 1203-1205.
[29]  Hehl, F.W., von der Heyde, P., Kerlick, G.D. and Nester, J.M. (1976) General Relativity with Spin and Torsion: Foundations and Prospects. Reviews of Modern Physics, 48, 393-416.
https://doi.org/10.1103/revmodphys.48.393
[30]  Petti, R.J. (1976) Some Aspects of the Geometry of First-Quantized Theories. General Relativity and Gravitation, 7, 869-883.
https://doi.org/10.1007/bf00771019
[31]  Trautman, A. (2006) Einstein-Cartan Theory. In: Françoise, J.-P., Naber, G.L. and Tsun, T.S., Eds., Encyclopedia of Mathematical Physics, Elsevier, 189-195.
https://doi.org/10.1016/b0-12-512666-2/00014-6
[32]  Blagojević, M. and Hehl, F.W. (2013) Gauge Theories of Gravitation: A Reader with Commentaries. Imperial College Press.
[33]  Wikipedia. James Webb Space Telescope.
https://en.wikipedia.org/wiki/James_Webb_Space_Telescope
[34]  Gronwald, F. and Hehl, F. (1996) On the Gauge Aspects of Gravity. Proceedings of the 14th Course of the School of Cosmology and Gravitation on Quantum Gravity, Erice.
https://www.researchgate.net/publication/1974709_On_the_Gauge_Aspects_of_Gravity
[35]  Petti, R.J. (1986) On the Local Geometry of Rotating Matter. General Relativity and Gravitation, 18, 441-460.
https://doi.org/10.1007/bf00770462
[36]  Petti, R.J. (2021) Derivation of Einstein–Cartan Theory from General Relativity. International Journal of Geometric Methods in Modern Physics, 18, Article 2150083.
https://doi.org/10.1142/s0219887821500833
[37]  Macsyma, Inc. (1996) Macsyma Mathematics and System Reference Manual. 16th Edition, Macsyma, Inc.
[38]  Fabbri, L. (2018) A Simple Assessment on Inflation. International Journal of Theoretical Physics, 56, 1-3.
https://www.researchgate.net/publication/307564049
[39]  Petti, R.J. (2022) Do Some Virtual Bound States Carry Torsion Trace? International Journal of Geometric Methods in Modern Physics, 19, 1-11.
http://arxiv.org/abs/2202.12734
https://doi.org/10.1142/s0219887822500761
[40]  Petti, R.J. and Graham, J.L. (2024) Momentum as Translations at Conformal Infinity. Journal of Applied Mathematics and Physics, 12, 1522-1540.
https://www.scirp.org/journal/paperinforcitation?paperid=132988
https://doi.org/10.4236/jamp.2024.124093
[41]  Petti, R.J. (2022) Conformal Structure of Quantum Wave Mechanics. International Journal of Geometric Methods in Modern Physics, 19, Article 2250174.
https://doi.org/10.1142/s0219887822501742
[42]  https://en.wikipedia.org/wiki/Standard_Model

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133