Geometric gauge theory provides a mathematical foundation for the most successful innovations in twentieth-century theoretical physics. The theories use symmetry groups, connections on fiber bundles, and concepts of parallel translation and curvature to model basic physics. More specifically, spacetime translations and projective conformal transformations model linear momentum; affine torsion, including torsion trace, models intrinsic angular momentum; conformal dilations model quantum wave mechanics; and unitary symmetry models elementary particles. The present work combines these basic gauge symmetries in a common framework as distributions of discrete defects in affine spaces, where each type of gauge field can be interpreted geometrically as a distribution of discrete defects in a regular lattice. The final section suggests in general terms research programs to search for distributions of discrete defects in regular lattices that underlie gauge theories.
References
[1]
Copernicus, N. (1543) Dē revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres). Johannes Petreius.
[2]
Kepler, J. (1621) Mysterium cosmographicum (The Sacred Mystery of the Cosmos). 2nd Edition
Maxwell, J.C. (1873) A Treatise on Electricity and Magnetism. Clarendon Press.
[5]
Michelson, A.A. and Morley, E.W. (1887) On the Relative Motion of the Earth and the Luminiferous Ether. AmericanJournalofScience, 3, 333-345. https://doi.org/10.2475/ajs.s3-34.203.333
[6]
Planck, M. (1900) On the Theory of the Energy Distribution Law of the Normal Spectrum. Verhandlungen der Deutschenphysikalischen Gesellschaft, 2, 38-45.
[7]
Einstein, A. (1905) On a Heuristic Viewpoint Concerning the Emission and Transformation of Light. Annalen der Physik, 17, 132-148. https://doi.org/10.1002/andp.19053220607
[8]
Bohr, N. (1913) On the Constitution of Atoms and Molecules. TheLondon, Edinburgh, andDublinPhilosophicalMagazineandJournalofScience, 26, 1-25. https://doi.org/10.1080/14786441308634955
[9]
Schrödinger, E. (1926) An Undulatory Theory of the Mechanics of Atoms and Molecules. PhysicalReview, 28, 1049-1070. https://doi.org/10.1103/physrev.28.1049
[10]
Dirac, P. (1928) The Quantum Theory of the Electron. ProceedingsoftheRoyalSocietyA, 117, 610-624.
[11]
Debever, R. (1979) Elie Cartan—Albert Einstein: Letters on Absolute Parallelism 1929-1932. Princeton University Press, 5-13.
[12]
Hubble, E. (1929) A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences, 15, 168-173. https://doi.org/10.1073/pnas.15.3.168
[13]
Kibble, T.W.B. (1961) Lorentz Invariance and the Gravitational Field. JournalofMathematicalPhysics, 2, 212-221. https://doi.org/10.1063/1.1703702
[14]
SCIAMA, D.W. (1964) The Physical Structure of General Relativity. ReviewsofModernPhysics, 36, 463-469. https://doi.org/10.1103/revmodphys.36.463
[15]
Weyl, H. (1929) Electrons and Gravitation I. Proceedings of the National Academy of Sciences of the United States of America, 15, 323-334. https://doi.org/10.1073/pnas.15.4.323
[16]
Yang, C.N. and Mills, R.L. (1954) Conservation of Isotopic Spin and Isotopic Gauge Invariance. PhysicalReview, 96, 191-195. https://doi.org/10.1103/physrev.96.191
Singer, I.M. and Thorpe, J, A. (1967) Lecture Notes on Elementary Topology and Geometry. Springer Publishing. https://doi.org/10.1007/978-1-4615-7347-0
[19]
Bishop, R.L. and Crittenden, R.J. (1964) Geometry of Manifolds. Academic Press.
[20]
Kobayashi, S. and Nomizu, K. (1963) Foundations of Differential Geometry. John Wiley & Sons.
[21]
See for Example. https://en.wikipedia.org/wiki/Covariance_and_contravariance_of_vectors
[22]
Einstein, A. (1905) Zur Elektrodynamik bewegter Körper. AnnalenderPhysik, 322, 891-921. https://users.physics.ox.ac.uk/~rtaylor/teaching/specrel.pdf https://doi.org/10.1002/andp.19053221004
[23]
Einstein, A. (1915) The Field Equations of Gravitation English Translation. https://en.wikisource.org/wiki/Translation:The_Field_Equations_of_Gravitation
[24]
Adler, R., Bazin, M. and Schiffer, M. (1975) Introduction to General Relativity. 2nd Edition, McGraw Hill.
Cartan É (1922) Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion. Comptesrendus de l'Académie des Sciences, 174, 593-595.
[27]
Sciama, D.W. (1962) On the Analogy between Charge and Spin in General Relativity. RecentDevelopmentsinGeneralRelativity, Polish Scientific Publishers, 415-439.
[28]
Adamowicz W (1975) Equivalence between the Einstein-Cartan and General Rela-tivity Theories in the Linear Approximation for a Classical Model of Spin. Bulletin of the Polish Academy of Sciences, Series on Mathematical, Astronomical and Physical Sciences, 23, 1203-1205.
[29]
Hehl, F.W., von der Heyde, P., Kerlick, G.D. and Nester, J.M. (1976) General Relativity with Spin and Torsion: Foundations and Prospects. ReviewsofModernPhysics, 48, 393-416. https://doi.org/10.1103/revmodphys.48.393
[30]
Petti, R.J. (1976) Some Aspects of the Geometry of First-Quantized Theories. GeneralRelativityandGravitation, 7, 869-883. https://doi.org/10.1007/bf00771019
[31]
Trautman, A. (2006) Einstein-Cartan Theory. In: Françoise, J.-P., Naber, G.L. and Tsun, T.S., Eds., Encyclopedia of Mathematical Physics, Elsevier, 189-195. https://doi.org/10.1016/b0-12-512666-2/00014-6
[32]
Blagojević, M. and Hehl, F.W. (2013) Gauge Theories of Gravitation: A Reader with Commentaries. Imperial College Press.
[33]
Wikipedia. James Webb Space Telescope. https://en.wikipedia.org/wiki/James_Webb_Space_Telescope
[34]
Gronwald, F. and Hehl, F. (1996) On the Gauge Aspects of Gravity. Proceedings of the 14th Course of the School of Cosmology and Gravitation on Quantum Gravity, Erice. https://www.researchgate.net/publication/1974709_On_the_Gauge_Aspects_of_Gravity
[35]
Petti, R.J. (1986) On the Local Geometry of Rotating Matter. GeneralRelativityandGravitation, 18, 441-460. https://doi.org/10.1007/bf00770462
[36]
Petti, R.J. (2021) Derivation of Einstein–Cartan Theory from General Relativity. InternationalJournalofGeometricMethodsinModernPhysics, 18, Article 2150083. https://doi.org/10.1142/s0219887821500833
[37]
Macsyma, Inc. (1996) Macsyma Mathematics and System Reference Manual. 16th Edition, Macsyma, Inc.
[38]
Fabbri, L. (2018) A Simple Assessment on Inflation. International Journal of Theoretical Physics, 56, 1-3. https://www.researchgate.net/publication/307564049
[39]
Petti, R.J. (2022) Do Some Virtual Bound States Carry Torsion Trace? InternationalJournalofGeometricMethodsinModernPhysics, 19, 1-11. http://arxiv.org/abs/2202.12734 https://doi.org/10.1142/s0219887822500761
[40]
Petti, R.J. and Graham, J.L. (2024) Momentum as Translations at Conformal Infinity. JournalofAppliedMathematicsandPhysics, 12, 1522-1540. https://www.scirp.org/journal/paperinforcitation?paperid=132988 https://doi.org/10.4236/jamp.2024.124093