全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Portrait of an Impact Strewn Field—Thermoclastic Ricochet Track: Eocene-Oligocene Transition (EOT), Jordan, Arabian Plate

DOI: 10.4236/ojg.2025.153008, PP. 174-197

Keywords: Volcanism, Impacting Affect Sedimentology, Mineralogy, Cosmic Winter, Jordanian Platform

Full-Text   Cite this paper   Add to My Lib

Abstract:

Almost coevally with worldwide impact events, immediately at the beginning of the Eocene-Oligocene Transformation (EOT), (34.0 - 33.5 Ma), the Jordanian Platform and adjacent areas underwent an Impact Strewnfield/Ricochet-Scenery along a W/NW-striking ~400 km long strip, connected with triggered basalt magmatism (B1 - B3) and relating to the initial Red Sea Opening (34 Ma). The members of the Impact Ensemble expose along the “Fireline” a broad spectrum of characteristic impact structures (crater, ring structures, irregular structures) exhibiting thermo-clastic deformation ranging from low temperature to pyroxenite-sanidine hornfels facies of the Maastrichtian to Eocene target rocks (carbonate-, chert deposits), chert melt (~1400?C: Jebel Waqf as Suwwan) and many mineral neoformations up to >1100?C. Careful lithostratigraphic reviewing (including nannoplankton, and pelagic foraminifers) in the remote NE, near the Jordanian/Iraqi border area, and modern δ13C- and δ18C-isotope data of high resolution allow detailed age interpretation of impacting, triggered basalt magmatismus (B1 - B3) and lithofacies change from pelagic “Greenhouse”-carbonate rocks to oxygene-deficient bituminous baryte-bearing marls during step-wise microfauna extinction and high disturbance (“Cosmic Winter”-Environment: 34.0 - 33.9 Ma = 100 kyr). After the EOT, the lithofacies changed abruptly above a significant unconformity to glauconite-bearing mixed siliciclastics during the Early Oligocene Glacial Maximum (EOGM 33.5 - 33.0 Ma), followed by recovered lithofacies and microfauna under rising temperature. The subvolcanic precursors of the Red Sea-Opening (i.e. Sinai) penetrated the Arabian Shield by sills and dikes (44.42 - 41.34 Ma) and provided a restricted magma volume up to a surface near “highstand-level”, to be impact-triggered and to cause locally restricted outpourings (B1 - B3) or merely basaltic crater seams and jets without outflow. The major plateau basalt outpourings/harrats (B4 - B6) across the Arabian Shield took place during Oligocene-Miocene B. to the Pleistocene, directed by plate tectonic forces in connection with the Red Sea-rifting and the collision of the Arabian with the Eurasian Plates.

References

[1]  Schneider, W. and Salameh, E. (2018) How to Trace out Impact-Triggered Effects Globally Scattered around Formation Boundaries: Case Uhry, North Germany (Eocene/Oligocene Boundary). Open Journal of Geology, 8, 9-32.
https://doi.org/10.4236/ojg.2018.81002
[2]  Barnes, V.E. (1963) Tektite Strewnfields. In: O’Keefe, A., Ed., Tektites, University Chicago Press, 25-50.
[3]  Glass, B.P., Swincki, M.B., and Zwast, P.A. (1979) Australasian, Ivary Coast and N American Tektite Strewnfields-Size, Masse and Correlation with Geomagnetic Reversals and Other Earth Events. Proceedings of the 10th Lunar and Planetary Science Conference, 19-23 March 1979, 2535-2245.
[4]  Montanari, A. (1990) Geochronology of the Terminal Eocene Impacts; an Update. In: Sharpton, V.L. and Ward, P.D., Eds., Geological Society of America Special Papers, Geological Society of America, 607-616.
https://doi.org/10.1130/spe247-p607
[5]  Gehrels, T. (1994) Hazards Due to Comets and Asteroids. University Arizona Press.
[6]  Ernstson, K. and Fiebag, J. (1992) The Azuara Impact Structure (Spain): New Insights from Geophysical and Geological Investigations. Geologische Rundschau, 81, 403-427.
https://doi.org/10.1007/bf01828607
[7]  Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001) Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292, 686-693.
https://doi.org/10.1126/science.1059412
[8]  Price, N.J. (2001) Major Impacts and Plate Tectonics. Routledge.
https://doi.org/10.1201/9780203165454
[9]  Camp, V.E. and Roobol, M.J. (1989) The Arabian Continental Alkali Basalt Province: Part I. Evolution of Harrat Rahat, Kingdom of Saudi Arabia. Geological Society of America Bulletin, 101, 71-95.
https://doi.org/10.1130/0016-7606(1989)101<0071:tacabp>2.3.co;2
[10]  Keller, G. (1986) Stepwise Mass Extinctions and Impact Events: Late Eocene to Early Oligocene. Marine Micropaleontology, 10, 267-293.
https://doi.org/10.1016/0377-8398(86)90032-0
[11]  Pearson, P.N., McMillan, I.K., Wade, B.S., Jones, T.D., Coxall, H.K., Bown, P.R., et al. (2008) Extinction and Environmental Change across the Eocene-Oligocene Boundary in Tanzania. Geology, 36, 179-182.
https://doi.org/10.1130/g24308a.1
[12]  Hutchinson, D.K., Coxall, H.K., Lunt, D.J., Steinthorsdottir, M., de Boer, A.M., Baatsen, M., et al. (2021) The Eocene-Oligocene Transition: A Review of Marine and Terrestrial Proxy Data, Models and Model-Data Comparisons. Climate of the Past, 17, 269-315.
https://doi.org/10.5194/cp-17-269-2021
[13]  Bender, F. (1975) Geology of the Arabian Peninsula, Jordan. Professional Paper, United States Geological Survey.
[14]  Boom van den, G. (1968) Zur Petrogenese der Plateaubasalte NE-Jordaniens. Geologisches Jahrbuch der BGR, 85, 489-496.
[15]  Heimbach, W. (1970) Zur Geologie NE-Jordaniens. Geologisches Jahrbuch der BGR, 88, 265-288.
[16]  Gradstein, F.M., Ogg, J G., Schmitz, M. and Ogg, G. (2012) The Geologic Time Scale. Elsevier.
[17]  Cande, S.C. and Kent, D.V. (1995) Revised Calibration of the Geomagnetic Polarity Timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research: Solid Earth, 100, 6093-6095.
https://doi.org/10.1029/94jb03098
[18]  Schneider, W. and Wachendorf, H. (1973) Vulkanismus und Graben-Bildung im Roten Meer. Geologische Rundschau, 62, 754-773.
https://doi.org/10.1007/bf01820959
[19]  Camp, V.E., Roobol, M.J. and Hooper, P.R. (1991) The Arabian Continental Alkali Basalt Province: Part II. Evolution of Harrats Khaybar, Ithnayn, and Kura, Kingdom of Saudi Arabia. Geological Society of America Bulletin, 103, 363-391.
https://doi.org/10.1130/0016-7606(1991)103<0363:tacabp>2.3.co;2
[20]  Al-Zoubi, A.S. and Abu-Hamatteh, Z.S.H. (2009) Geological Evolution of the Jordan Valley. Journal of the Virtual Explorer, 32, 1-9.
https://doi.org/10.3809/jvirtex.2009.00248
[21]  Haq, B.U. and Al-Qahtani, A.M. (2005) Phanerozoic Cycles of Sea-Level Change on the Arabian Platform. GeoArabia, 10, 127-160.
https://doi.org/10.2113/geoarabia1002127
[22]  Salameh, E., Khoury, H. and Schneider, W. (2006) Jebel Wagf as Suwwan, Jordan: A Possible Impact Crater a First Approach. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 319-325.
https://doi.org/10.1127/1860-1804/2006/0157-0319
[23]  Salameh, E., Khoury, H., Reimold, W.U. and Schneider, W. (2008) The First Large Meteorite Impact Structure Discovered in the Middle East: Jebel Waqf as Suwwan, Jordan. Meteoritics & Planetary Science, 43, 1681-1690.
https://doi.org/10.1111/j.1945-5100.2008.tb00636.x
[24]  Kenkmann, T., Reimold, W.U., Khirfan, M., Salameh, E., Khoury, H. and Konsul, K. (2010) The Complex Impact Crater Jebel Waqf as Suwwan in Jordan: Effects of Target Heterogeneity and Impact Obliquity on Central Uplift Formation. In: Gibson, R.L., Reimold, W.U., Eds., Large Meteorite Impacts and Planetary Evolution IV, Geological Society of America, 471-487.
https://doi.org/10.1130/2010.2465(23)
[25]  Heimbach, W. and Rösch, H. (1980) Die “Mottled Zone” in Zentraljordanien. Geologisches Jahrbuch der BGR, 40, 3-17.
[26]  Schneider, W. and Salameh, E. (2014) Uncommon and Impact-Suspicious Geologic Phenomena across Jordan and Adjacent Areas, Arabian Plate. Open Journal of Geology, 4, 680-717.
https://doi.org/10.4236/ojg.2014.412051
[27]  Schultz, P.H. and Gault, D.E. (1990) Prolonged Global Catastrophes from Oblique Impacts. In: Sharpton, V.L. and Ward, P.D., Eds., Geological Society of America Special Papers, Geological Society of America, 239-262.
https://doi.org/10.1130/spe247-p239
[28]  Bentor, Y.K., Gross, S. and Kolodny, Y. (1972) New Evidence on the Origin of the High-Temperature Mineral Assemblage of the “Mottled Zone” (Israel). 24th International Geological Congress, Section 2, 267-275.
[29]  Gross, S. (1970) Mineralogy of the “Mottled Zone” Complex in Israel. List of Minerals. Israel Journal of Earth Sciences, 19, 211-216.
[30]  Gross, S. (1977) The Mineralogy of the Hatrurim Formation. Israel. The Mineralogy of the the Hatrurim Formation, Israel, Geological Survey of Israel.
[31]  Kolodny, Y., Bar, M. and Sass, E. (1971) Fission Track Age of the Mottled Zone Event' in Israel. Earth and Planetary Science Letters, 11, 269-272.
https://doi.org/10.1016/0012-821x(71)90178-6
[32]  Kolodny, Y., Schulman, N. and Gross, S. (1973) Hazeva Formation Sediments Affected by the “Mottled Zone” Event. Israel Journal of Earth Sciences, 22, 185-193.
[33]  Kolodny, Y. and Gross, S. (1974) Thermal Metamorphism by Combustion of Organic Matter: Isotopic and Petrological Evidence. The Journal of Geology, 82, 489-506.
https://doi.org/10.1086/627995
[34]  Heimbach, W. (1969) Vulkanogene Erscheinungen in der Kalktafel Zentraljordaniens. Beih. Geologisches Jahrbuch der BGR, 81, 149-160.
[35]  Master, S. (2009) A Possible 7.5 km-Diameter Buried Impact Structure on the Jordan-Iraq Border: Geological Setting and Remote Sensing. The First Arab Impact Cratering and Astrogeology Conference, Amman, 9-11 November 2009, 58-60.
[36]  Mitchel, R. (1958) The Al Umchamin Crater, W Iraq. The Geographical Journal, 124, 578-580.
[37]  Wiesemann, G. and Rösch, H. (1969) Zur Tektonik des Gebietes östlich des Gra-benabschnittes Totes Meer-Jordantal. Beih. Geologisches Jahrbuch der BGR, 81, 177-214.
[38]  Khoury, H., Salameh, E., Schneider, W. and Khirfan, M. (2009) Chert from Jebel Waqf as Suwwan. The First Arab Impact Cratering and Astrogeology Conference, Amman, 9-11 November 2009, 42-44.
[39]  Frisch, W. and Meschede, M. (2009) Plattentektonik. 3rd Edition, Buch-gesellschaft.
[40]  Schmincke, H.U. (2000) Vulkanismus. Buch-gesellschaft.
[41]  Schneider, W. and Salameh, E. (2024) Cretaceous Large Igneous Provinces (LIPs) Affect Sedimentary Processing: Jordan, Arabian Plate; NW Germany, Central Europe. Open Journal of Geology, 14, 671-704.
https://doi.org/10.4236/ojg.2024.146029
[42]  Coleman, R.G., Fleck, R.J., Hedge, C.E. and Ghent, E.D. (1977) The Volcanic Rocks of SW Saudi Arabia and the Opening of the Red Sea. In: Directorate General of Mineral Resources, Ed., Red Sea Research 1970-1975: Saudi Arabian Directorate General of Mineral Resources Bulletin 22, Directorate General of Mineral Resources, D1-D30.
[43]  Vahrenholt, F. and Lüning, S. (2021) Unerwünschte Wahrheiten, IMV. 6th Edition, Langen Müller Verlag
[44]  Stöffler, D. (2002) Bedrohung aus dem Weltall. Asteroiden und Kometen. In: Emmer-mann, R., et al. Eds., An den Fronten der Forschung. Verh, Gesellschaft Deutscher Naturforscher und Ärzte (GDNÄ), 81-98.
[45]  Ormö, J., Sturkell, E., Alwmark, C. and Melosh, J. (2014) First Known Terrestrial Impact of a Binary Asteroid from a Main Belt Breakup Event. Scientific Reports, 4, Article No. 3724.
https://doi.org/10.1038/srep06724
[46]  Clube, V. and Napier, B. (1990) The Cosmic Winter. Blackwell.
[47]  Clube, S.V.M. and Napier, W.N. (1986) Giant Comets and Galaxy. Implications of the Terrestrial Record. In: Smoluchowsky, J.N., et al. Eds., The Galaxy and Solar System, University Arizona Press, 260-285.
[48]  Hoyle, F. (1993) The Origin of the Universe and the Origin of Religion. Moyer Bell.
[49]  Wilkinson, D. (1991) Our Universes. Columbia University Press.
[50]  Brink, H. (2006) Do the Global Geodynamic Cycles of the Phanerozoic Represent a Feedback System of the Earth and Is the Moon Involved as an Acting External Force? Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 17-40.
https://doi.org/10.1127/1860-1804/2006/0157-0017
[51]  Ballo, E.G., Augland, L.E., Hammer, Ø. and Svensen, H.H. (2019) A New Age Model for the Ordovician (Sandbian) K-Bentonites in Oslo, Norway. Palaeogeography, Palaeoclimatology, Palaeoecology, 520, 203-213.
https://doi.org/10.1016/j.palaeo.2019.01.016
[52]  Schneider, W. and Salameh, E. (2024) Ordovician Sedimentary Processing and Relating Driving Forces: Jordan, Arabian Plate. Preprint.
[53]  Lovelock, J. (1992) Gaia. Bern, München, Wien, Scherz.
https://www.scirp.org/reference/referencespapers?referenceid=3758522
[54]  Margulis, L. (1998) Symbiotic Planet. Basic Books.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133