全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

From Differential Sequences to Black Holes

DOI: 10.4236/jmp.2025.163023, PP. 410-440

Keywords: Killing Operator, Riemann Operator, Ricci Operator, Einstein Operator, Bianchi Operator, Cauchy Operator, Gravitational Waves, Black Holes

Full-Text   Cite this paper   Add to My Lib

Abstract:

When E. Beltrami introduced in 1892 the six stress functions Φ ij = Φ ji wearing his name and allowing to parametrize the Cauchy stress equations of elasticity theory in space, he surely did not know he was using the Einstein operator introduced by A. Einstein in 1915 for general relativity in space-time, both ignoring that it was self-adjoint in the framework of differential double duality and confusing therefore stress functions with the variation Ω ij = Ω ji of the metric ω . When I proved in 1995 that the Einstein equations in vacuum could not be parametrized like the Maxwell equations, solving thus negatively a 1000 dollars challenge of J. Wheeler in 1970, I did not imagine that such a purely mathematical result could also prove that the equations of the gravitational waves were not coherent with differential homological algebra. The purpose of this paper is to prove that this result is also showing that black holes cannot exist, not for a problem of detection but because their existence should contradict the link existing between the only two canonical differential sequences existing in the literature, namely the Janet sequence and the Spencer sequence, a result showing that the important object is not the metric but its group of invariance. Indeed, the last sequence is isomorphic to the tensor product of the Poincaré sequence by a Lie algebra of extremely small dimension when dealing with the differential resolutions of Killing vector fields while using successively the Minkowski (M), the Schwarzschild (S) and Kerr (K) metrics with respective parameters ( 0,0 ),( m,0 ) and ( m,a ) . The comparison

References

[1]  Janet, M. (1920) Sur les Systèmes aux Dérivées Partielles. Journal de Mathématiques Pures et Appliquées, 3, 65-151.
[2]  Cosserat, E. and Cosserat, F. (1909) Théorie des Corps Déformables. Herman.
[3]  Zerz, E. (2000) Topics in Multidimensional Linear Systems Theory. Lecture Notes in Control and Information Sciences (LNCIS), Vol. 256, Springer.
[4]  Klainerman, S. (2009) Linear Stability of Black Holes. Astérisque, 339, 91-135.
http://www.numdaaam.org
[5]  Klainerman, S. (2011) Are Black Holes Real? A Mathematical Perspective. You Tube, IHES, 22/04/2011.
[6]  Ionescu, A. and Klainerman, S. (2012) On the Local Extension of Killing Vector-Fields in Ricci Flat Manifolds. Journal of the American Mathematical Society, 26, 563-593.
https://doi.org/10.1090/s0894-0347-2012-00754-1
[7]  Damour, T. (2016) Gravitational Waves and Binary Black Holes.
http://www.bourbaphy.fr/december2016.html
https://seminaire-poincare.pages.math.cnrs.fr/damourgrav.pdf
[8]  Pommaret, J.-F. (2024) Chapter 6. Gravitational Waves and the Foundations of Riemann Geometry. In: Advances in Mathematical Research, Volume 35, NOVA Science Publisher, 95-61.
[9]  Pommaret, J. (2023) Gravitational Waves and Parametrizations of Linear Differential Operators. In: Frajuca, C., Ed., Gravitational WavesTheory and Observations, IntechOpen, Chapter 1, 3-39.
https://doi.org/10.5772/intechopen.1000851
[10]  Pommaret, J. (2021) Minimum Parametrization of the Cauchy Stress Operator. Journal of Modern Physics, 12, 453-482.
https://doi.org/10.4236/jmp.2021.124032
[11]  Pommaret, J. (2013) The Mathematical Foundations of General Relativity Revisited. Journal of Modern Physics, 4, 223-239.
https://doi.org/10.4236/jmp.2013.48a022
[12]  Pommaret, J. (2017) Why Gravitational Waves Cannot Exist. Journal of Modern Physics, 8, 2122-2158.
https://doi.org/10.4236/jmp.2017.813130
[13]  Pommaret, J. (2023) Killing Operator for the Kerr Metric. Journal of Modern Physics, 14, 31-59.
https://doi.org/10.4236/jmp.2023.141003
[14]  Aksteiner, S., Andersson, L., Bäckdahl, T., Khavkine, I. and Whiting, B. (2021) Compatibility Complex for Black Hole Spacetimes. Communications in Mathematical Physics, 384, 1585-1614.
https://doi.org/10.1007/s00220-021-04078-y
[15]  Aksteiner, S. and Bäckdahl, T. (2018) All Local Gauge Invariants for Perturbations of the Kerr Spacetime. Physical Review Letters, 121, Article ID: 051104.
https://doi.org/10.1103/physrevlett.121.051104
[16]  Aksteiner, S., Andersson, L. and Bäckdahl, T. (2019) New Identities for Linearized Gravity on the Kerr Spacetime. Physical Review D, 99, Article ID: 044043.
https://doi.org/10.1103/physrevd.99.044043
[17]  Pommaret, J.-. (2024) Cauchy, Cosserat, Clausius, Einstein, Maxwell, Weyl Equations Revisited. Journal of Modern Physics, 15, 2365-2397.
https://doi.org/10.4236/jmp.2024.1513097
[18]  Poincaré, H. (1901) Sur une Forme Nouvelle des Equations de la Mécanique. Comptes Rendus de lAcadémie des Sciences Paris, 132, 369-371.
[19]  Pommaret, J.-F. (1978) Systems of Partial Differential Equations and Lie Pseudogroups. Gordon and Breach. (Russian Translation: MIR, Moscow, 1983)
[20]  Pommaret, J.-F. (1994) Partial Differential Equations and Group Theory. Kluwer.
[21]  Pommaret, J.-F. (2001) Partial Differential Control Theory. Kluwer.
[22]  Pommaret, J.F. (2012) Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics. In: Gan, Y., Ed., Continuum MechanicsProgress in Fundamentals and Engineering Applications, InTech, Chapter 1, 1-32.
https://doi.org/10.5772/35607
[23]  Pommaret, J. (2022) How Many Structure Constants Do Exist in Riemannian Geometry? Mathematics in Computer Science, 16, Article No. 23.
https://doi.org/10.1007/s11786-022-00546-3
[24]  Pommaret, J. (2010) Parametrization of Cosserat Equations. Acta Mechanica, 215, 43-55.
https://doi.org/10.1007/s00707-010-0292-y
[25]  Pommaret, J. (2019) The Mathematical Foundations of Elasticity and Electromagnetism Revisited. Journal of Modern Physics, 10, 1566-1595.
https://doi.org/10.4236/jmp.2019.1013104
[26]  Pommaret, J.-F. (2016) Chapter 1. From Thermodynamics to Gauge Theory: The Virial Theorem Revisited. In: Bailey, L., Ed., Gauge Theories and Differential Geometry, Nova Science Publishers, 1-44.
[27]  Pommaret, J.F. (1991) Deformation Theory of Algebraic and Geometric Structures. In: Malliavin, M.-P., Ed., Topics in Invariant Theory, Springer, 244-254.
https://doi.org/10.1007/bfb0083506
[28]  Pommaret, J.-F. (2018) New Mathematical Methods for Physics, Mathematical Physics Books. Nova Science Publishers, 150 p.
[29]  Weyl, H. (1918, 1952) Space, Time, Matter. Dover.
[30]  Pommaret, J. (2024) From Control Theory to Gravitational Waves. Advances in Pure Mathematics, 14, 49-100.
https://doi.org/10.4236/apm.2024.142004
[31]  Pommaret, J. (2005) 5 Algebraic Analysis of Control Systems Defined by Partial Differential Equations. In: Lamnabhi-Lagarrigue, F., Loría, A. and Panteley, E., Eds., Advanced Topics in Control Systems Theory, Springer, 155-223.
https://doi.org/10.1007/11334774_5
[32]  Rotman, J.J. (1979) An Introduction to Homological Algebra. Academic Press.
[33]  Pommaret, J.-F. (1983) The Structure of Electromagnetism and Gravitation. Comptes Rendus de lAcadémie des Sciences Paris, Serie I, 297, 493-496.
[34]  Pommaret, J.-F. (2024) From Kalman to Einstein and Maxwell: The Structural Controllability.
[35]  Pommaret, J. (2025) Why Gravitational Waves Cannot Exist! Open Access Government, 45, 294-296.
https://doi.org/10.56367/oag-045-11836

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133