全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

西南干热河谷山地小流域侵蚀产沙和输沙估算
Assessing the Soil Erosion and Sediment Delivery in a Hilly Catchment in Arid and Hot Valley in Southwest China

DOI: 10.12677/hjce.2025.143047, PP. 413-420

Keywords: 土壤侵蚀,泥沙输移,小流域,西南干热河谷区
Soil Erosion
, Sediment Delivery, Catchments, Arid and Hot Valley in Southwest China

Full-Text   Cite this paper   Add to My Lib

Abstract:

将侵蚀产沙和泥沙传输衔接起来是全面评估土壤侵蚀及其环境影响的基础。当前大部分流域尺度的土壤侵蚀评估未能将二者衔接起来。针对西南干热河谷山地小流域,采用基于RUSLE模型对产沙的模拟,结合泥沙连通度指数为参数的泥沙输移率,估算小流域侵蚀产沙和输沙。结果表明,2024年流域总侵蚀产沙量2.90万t,输送到沟道的泥沙总量为0.55万t;流域泥沙输移率为0.19;耕地和草地分布区是流域内侵蚀产沙的主要来源;坡度为6?~15?坡度带是侵蚀产沙和输沙的主要来源区。未来需要从改善覆被及其空间格局的角度开展流域水土流失治理。
Combining soil detachment and sediment delivery set the foundation for fully evaluation of soil erosion and the consequent impacts on environment. To date, combining soil detachment and sediment delivery is a challenge in soil erosion modelling. This work targets the hilly catchments in arid and hot valley in southwestern China to test the combination of the two stage of soil loss. The RUSLE and sediment delivery ratio estimated from sediment connectivity index were linked to estimate the soil erosion and sediment delivery in the catchments. The results show that the gross soil erosion of the catchment is 29,000 t in 2024, accompanied by a sediment delivery of 5500 t. The sediment delivery ratio is 0.19 on average. It was revealed that the arable land and grassland are the key sources of sediment. Areas with a slope gradient of 6? - 15? contributed most of the sediment to the channels. Future countermeasures to soil erosion are suggested to focus on the spatial arrangement of land cover to prevent sediment delivery.

References

[1]  刘宇, 赵亮. 基于过程-效应-功能-服务级联机制的森林减沙服务传输研究[J]. 长江流域资源与环境, 2019, 28(4): 883-892.
[2]  肖寒, 欧阳志云, 赵景柱, 等. 海南岛生态系统土壤保持空间分布特征及生态经济价值评估[J]. 生态学报, 2000, 20(4): 552-558.
[3]  杨子生. 论水土流失与土壤侵蚀及其有关概念的界定[J]. 山地学报, 2001, 19(5): 436-445.
[4]  Jetten, V., Govers, G. and Hessel, R. (2003) Erosion Models: Quality of Spatial Predictions. Hydrological Processes, 17, 887-900.
https://doi.org/10.1002/hyp.1168

[5]  索安宁, 洪军, 林勇, 等. 黄土高原景观格局与水土流失关系研究[J]. 应用生态学报, 2005, 16(9): 1719-1723.
[6]  Kinnell, P.I.A. (2008) Discussion: Misrepresentation of the USLE in ‘Is Sediment Delivery a Fallacy?’. Earth Surface Processes and Landforms, 33, 1627-1629.
https://doi.org/10.1002/esp.1629

[7]  Alewell, C., Borrelli, P., Meusburger, K. and Panagos, P. (2019) Using the USLE: Chances, Challenges and Limitations of Soil Erosion Modelling. International Soil and Water Conservation Research, 7, 203-225.
https://doi.org/10.1016/j.iswcr.2019.05.004

[8]  Renard, K.G., Foster, G.R. and Weesies, G.A. (1997) Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE).
[9]  赵文武, 傅伯杰, 陈利顶, 等. 黄土丘陵沟壑区集水区尺度土地利用格局变化的水土流失效应[J]. 生态学报, 2004, 24(7): 1358-1364.
[10]  Van Rompaey, A.J.J., Verstraeten, G., Van Oost, K., Govers, G. and Poesen, J. (2001) Modelling Mean Annual Sediment Yield Using a Distributed Approach. Earth Surface Processes and Landforms, 26, 1221-1236.
https://doi.org/10.1002/esp.275

[11]  Lesschen, J.P., Schoorl, J.M. and Cammeraat, L.H. (2009) Modelling Runoff and Erosion for a Semi-Arid Catchment Using a Multi-Scale Approach Based on Hydrological Connectivity. Geomorphology, 109, 174-183.
https://doi.org/10.1016/j.geomorph.2009.02.030

[12]  刘宇. 土壤侵蚀研究中的景观连通度: 概念、作用及定量[J]. 地理研究, 2016, 35(1): 195-202.
[13]  张光辉. 从土壤侵蚀角度诠释泥沙连通性[J]. 水科学进展, 2021, 32(2): 295-306.
[14]  Vigiak, O., Borselli, L., Newham, L.T.H., McInnes, J. and Roberts, A.M. (2012) Comparison of Conceptual Landscape Metrics to Define Hillslope-Scale Sediment Delivery Ratio. Geomorphology, 138, 74-88.
https://doi.org/10.1016/j.geomorph.2011.08.026

[15]  刘宇, 滕佳昆. WATEM/SEDEM框架下的土壤保持效益传输研究[J]. 资源科学, 2017, 39(5): 860-870.
[16]  蔡崇法, 丁树文, 史志华, 等. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000, 14(2): 19-24.
[17]  Gutman, G. and Ignatov, A. (1998) The Derivation of the Green Vegetation Fraction from NOAA/AVHRR Data for Use in Numerical Weather Prediction Models. International Journal of Remote Sensing, 19, 1533-1543.
https://doi.org/10.1080/014311698215333

[18]  廖瑞恩, 齐实, 赖金林, 等. 西南高山峡谷区水力侵蚀时空变化及其驱动力[J]. 水土保持研究, 2024, 31(5): 139-147.
[19]  Abebe, N., Eekhout, J., Vermeulen, B., Boix-Fayos, C., de Vente, J., Grum, B., et al. (2023) The Potential and Challenges of the ‘RUSLE-IC-SDR’ Approach to Identify Sediment Dynamics in a Mediterranean Catchment. CATENA, 233, Article 107480.
https://doi.org/10.1016/j.catena.2023.107480

[20]  Borselli, L., Cassi, P. and Torri, D. (2008) Prolegomena to Sediment and Flow Connectivity in the Landscape: A GIS and Field Numerical Assessment. CATENA, 75, 268-277.
https://doi.org/10.1016/j.catena.2008.07.006

[21]  余剑如, 史立人, 冯明汉, 等. 长江上游的地面侵蚀与河流泥沙[J]. 水土保持通报, 1991, 11(1): 9-17.
[22]  中华人民共和国水利部. SL190-2007土壤侵蚀分类分级标准[S]. 北京: 中国标准出版社, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133