全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SAM2U-Net:基于SAM2与U-Net的医学图像分割模型
SAM2U-Net: A U-Shaped Medical Image Segmentation Model Based on SAM2 and U-Net

DOI: 10.12677/mos.2025.143227, PP. 337-347

Keywords: 甲状腺结节,息肉分割,深度学习,超声图像,分割算法,医学图像,U型架构,Transformer模块,并行网络
Thyroid Nodule
, Polyp Segmentation, Deep Learning, Ultrasound Imaging, Segmentation Algorithm, Medical Imaging, U-Shaped Architecture, Transformer Module, Parallel Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

医学图像分割在医学诊断中起着关键作用。尽管新兴视觉模型在各种医学分割任务中表现优异,但大多仅针对特定任务设计,缺乏普适性。本研究提出了一种新型SAM2学习模型,旨在实现通用医学图像分割。该模型基于U型架构,创新性地将SAM2的Hiera骨干网络与CNN模块并行结合,通过多尺度特征提取机制增强分割精度。在甲状腺结节诊断、结肠镜息肉分割等六个数据集上的实验表明,本模型在Dice系数和IoU上平均提高了1.46%,优于现有方法。结果证实,该模型能有效提取医学图像的病理特征,实现准确的区域分割,为广泛的临床诊断任务提供支持。
Medical image segmentation plays a crucial role in medical diagnosis. Although emerging visual models perform excellently in various medical segmentation tasks, most are designed for specific tasks and lack universality. This study proposes a novel SAM2 learning model aimed at achieving general medical image segmentation. The model is based on a U-shaped architecture and innovatively combines the Hiera backbone network of SAM2 with CNN modules in parallel, enhancing segmentation accuracy through a multi-scale feature extraction mechanism. Experiments on six datasets, including thyroid nodule diagnosis and colonoscopic polyp segmentation, demonstrate that this model improves the average Dice coefficient and IoU by 1.45% compared to existing methods. The results confirm that the model can effectively extract pathological features from medical images, achieving accurate regional segmentation and supporting a wide range of clinical diagnostic tasks.

References

[1]  Otsu, N. (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66.
https://doi.org/10.1109/tsmc.1979.4310076
[2]  Zhang, Y. (2006) An Overview of Image and Video Segmentation in the Last 40 Years. In: Zhang, Y.J., Ed., Advances in Image and Video Segmentation, IGI Global, 1-16.
https://doi.org/10.4018/978-1-59140-753-9.ch001
[3]  Khan, J.F., Bhuiyan, S.M.A. and Adhami, R.R. (2011) Image Segmentation and Shape Analysis for Road-Sign Detection. IEEE Transactions on Intelligent Transportation Systems, 12, 83-96.
https://doi.org/10.1109/tits.2010.2073466
[4]  Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998) Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86, 2278-2324.
https://doi.org/10.1109/5.726791
[5]  Fu, Z., Li, J. and Hua, Z. (2022) Deau-net: Attention Networks Based on Dual Encoder for Medical Image Segmentation. Computers in Biology and Medicine, 150, Article ID: 106197.
https://doi.org/10.1016/j.compbiomed.2022.106197
[6]  司明明, 陈玮, 胡春燕, 等. 融合Resnet50和U-Net的眼底彩色血管图像分割[J]. 电子科技, 2021, 34(8): 19-24.
[7]  Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W. and Frangi, A., Eds., Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Springer, 234-241.
https://doi.org/10.1007/978-3-319-24574-4_28
[8]  Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., et al. (2023) Segment Anything. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, 1-6 October 2023, 3992-4003.
https://doi.org/10.1109/iccv51070.2023.00371
[9]  Ravi, N., Gabeur, V., Hu, Y.T., Hu, R., Ryali, C., Ma, T., Khedr, H., Rädle, R., Rolland, C., Gustafson, L., et al. (2024) Sam 2: Segment Anything in Images and Videos. arXiv: 2408.00714.
[10]  Chen, T., Zhu, L., Ding, C., Cao, R., Wang, Y., Zhang, S., et al (2023) SAM-Adapter: Adapting Segment Anything in Underperformed Scenes. 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Paris, 2-6 October 2023, 3359-3367.
https://doi.org/10.1109/iccvw60793.2023.00361
[11]  Huang, D., Xiong, X., Ma, J., Li, J., Jie, Z., Ma, L., et al. (2024) AlignSAM: Aligning Segment Anything Model to Open Context via Reinforcement Learning. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 16-22 June 2024, 3205-3215.
https://doi.org/10.1109/cvpr52733.2024.00309
[12]  Liu, Y., Zhu, M., Li, H., Chen, H., Wang, X. and Shen, C. (2024) Matcher: Segment Anything with One Shot Using All-Purpose Feature Matching. ICLR.
[13]  Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Deh-ghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J. and Houlsby, N. (2021) An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. ICLR.
[14]  Ravi, N., Gabeur, V., Hu, Y.T., et al. (2024) Sam 2: Segment Anything in Images and Videos. arXiv preprint arXiv:2408.00714.
[15]  Woo, S., Park, J., Lee, J. and Kweon, I.S. (2018) CBAM: Convolutional Block Attention Module. In: Ferrari, V., Hebert, M., Sminchisescu, C. and Weiss, Y., Eds., Computer VisionECCV 2018, Springer, 3-19.
https://doi.org/10.1007/978-3-030-01234-2_1
[16]  Vasques, B.I., Pereira, J.M., Santos, A. and Neves, L.A. (2017) A Public Dataset for Thyroid Ultrasound Image Analysis. Proceedings of the IEEE International Conference on Image Processing (ICIP), Beijing, 17-20 September 2017.
[17]  Gong, H., Chen, G., Wang, R., Xie, X., Mao, M., Yu, Y., et al. (2021) Multi-Task Learning for Thyroid Nodule Segmentation with Thyroid Region Prior. 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, 13-16 April 2021, 257-261.
https://doi.org/10.1109/isbi48211.2021.9434087
[18]  Jha, D., Smedsrud, P.H., Riegler, M.A., Halvorsen, P., de Lange, T., Johansen, D., et al. (2019) Kvasir-SEG: A Segmented Polyp Dataset. In: Ro, Y., et al., Eds., MultiMedia Modeling, MMM 2020, Springer, 451-462.
https://doi.org/10.1007/978-3-030-37734-2_37
[19]  Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C. and Vilariño, F. (2015) WM-DOVA Maps for Accurate Polyp Highlighting in Colonoscopy: Validation Vs. Saliency Maps from Physicians. Computerized Medical Imaging and Graphics, 43, 99-111.
https://doi.org/10.1016/j.compmedimag.2015.02.007
[20]  Tajbakhsh, N., Gurudu, S.R. and Liang, J. (2016) Automated Polyp Detection in Colonoscopy Videos Using Shape and Context Information. IEEE Transactions on Medical Imaging, 35, 630-644.
https://doi.org/10.1109/tmi.2015.2487997
[21]  Silva, J., Histace, A., Romain, O., Dray, X. and Granado, B. (2013) Toward Embedded Detection of Polyps in WCE Images for Early Diagnosis of Colorectal Cancer. International Journal of Computer Assisted Radiology and Surgery, 9, 283-293.
https://doi.org/10.1007/s11548-013-0926-3
[22]  Loshchilov, I. and Hutter, F. (2019) Decoupled Weight Decay Regularization. International Conference on Learning Representations (ICLR), New Orleans, 6-9 May 2019.
[23]  Milletari, F., Navab, N. and Ahmadi, S. (2016) V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth International Conference on 3D Vision (3DV), Stanford, 25-28 October 2016, 565-571.
https://doi.org/10.1109/3dv.2016.79
[24]  Dice, L.R. (1945) Measures of the Amount of Ecologic Association between Species. Ecology, 26, 297-302.
https://doi.org/10.2307/1932409
[25]  Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J. and Zisserman, A. (2009) The Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 88, 303-338.
https://doi.org/10.1007/s11263-009-0275-4
[26]  Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2017) Rethinking Atrous Convolution for Se-mantic Image Segmentation. arXiv: 1706.05587.
[27]  Chen, L., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H. (2018) Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C. and Weiss, Y., Eds., Computer VisionECCV 2018., Springer, 833-851.
https://doi.org/10.1007/978-3-030-01234-2_49
[28]  Zhang, Y., Zhang, Q., Wang, X. and Zhang, Y. (2022) Devil Is in Channels: Contrastive Single Domain Generalization for Medical Image Segmentation. arXiv: 2209.07211.
[29]  Trinh, Q.H. (2023) Meta-Polyp: A Baseline for Efficient Polyp Segmentation. arXiv: 2305.07848.
[30]  Huang, C.H., Wu, H.Y. and Lin, Y.L. (2021) HarDNet-MSEG: A Simple Encoder-Decoder Polyp Segmentation Neural Network that Achieves over 0.9 Mean Dice and 86 FPS. arXiv: 2101.07172.
[31]  Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S.K. and Cui, S. (2021) Shallow Attention Network for Polyp Segmentation. In: de Bruijne, M., et al., Eds., Medical Image Computing and Computer Assisted InterventionMICCAI 2021, Springer, 699-708.
https://doi.org/10.1007/978-3-030-87193-2_66
[32]  Zhao, X., Zhang, L. and Lu, H. (2021) Automatic Polyp Segmentation via Multi-Scale Subtraction Network. In: de Bruijne, M., et al., Eds., Medical Image Computing and Computer Assisted InterventionMICCAI 2021, Springer, 120-130.
https://doi.org/10.1007/978-3-030-87193-2_12
[33]  Wang, J., Huang, Q., Tang, F., Meng, J., Su, J. and Song, S. (2022) Stepwise Feature Fusion: Local Guides Global. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S. and Li, S., Eds., Medical Image Computing and Computer Assisted InterventionMICCAI 2022, Springer, 110-120.
https://doi.org/10.1007/978-3-031-16437-8_11
[34]  Zhou, T., Zhou, Y., He, K., Gong, C., Yang, J., Fu, H., et al. (2023) Cross-Level Feature Aggregation Network for Polyp Segmentation. Pattern Recognition, 140, Article ID: 109555.
https://doi.org/10.1016/j.patcog.2023.109555
[35]  Zhang, J., Ma, K., Kapse, S., Saltz, J., Vakalopoulou, M., Prasanna, P., et al. (2023) SAM-Path: A Segment Anything Model for Semantic Segmentation in Digital Pathology. In: Celebi, M.E., et al., Eds., Medical Image Computing and Computer Assisted InterventionMICCAI 2023 Workshops, Springer, 161-170.
https://doi.org/10.1007/978-3-031-47401-9_16

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133