|
基于双向孟德尔随机化分析探究豆制品与痛风的因果关系
|
Abstract:
背景:大豆制品与痛风之间的因果关系尚未从遗传角度阐明。目的:本研究旨在通过双向两样本孟德尔随机化(MR)方法,探讨三种大豆制品(豆腐、豆浆和大豆甜点)摄入与痛风之间的遗传关联。方法:从已知的全基因组关联研究综合数据库中提取大豆制品相关单核苷酸多态性位点作为工具变量。RStudio中的TwoSampleMR软件包用于对大豆制品和痛风进行双向MR分析。MR分析使用了五种不同的方法:逆方差加权、MR-Egger回归、加权中值、简单模式和加权模式。使用异质性函数进行异质性检验,并通过MR Egger截距检验评估水平多效性。使用留一法进行敏感性分析,以验证结果的稳健性。结果:五种MR分析方法产生的P值均大于0.05。敏感性分析表明,既没有异质性也没有多效性,留一法分析结果表明,去除任何单个SNP都不会显著影响结果。结论:大豆制品摄入与痛风风险之间没有遗传关联。
Background: The causal relationship between soy products and gout has not yet been clarified from a genetic perspective. Objective: This study aimed to explore the genetic association between three types of soy products (tofu, soya milk, and soya dessert) intake and gout, using a bidirectional two-sample Mendelian randomization (MR) approach. Methods: Soy product-related single nucleotide polymorphism loci were extracted as instrumental variables from the comprehensive database of known genome-wide association studies. The TwoSampleMR package in RStudio was used to carry out bidirectional MR analysis for soy products and gout. Five different methods were used for the MR analysis: inverse variance weighted, MR Egger regression, weighted median, simple mode, and weighted mode. Heterogeneity tests were conducted using the heterogeneity function, and horizontal pleiotropy was assessed by the MR-Egger intercept test. Sensitivity analysis was performed using the leave-one-out method to validate the robustness of the results. Results: The P-values generated by the five methods of MR analysis were all greater than 0.05. Sensitivity analysis indicated neither heterogeneity nor pleiotropy, and the leave-one-out method showed that removing any single SNP did not significantly affect the results. Conclusion: No genetic association was found between soy products intake and the risk of gout.
[1] | Roddy, E. and Choi, H.K. (2014) Epidemiology of Gout. Rheumatic Disease Clinics of North America, 40, 155-175. https://doi.org/10.1016/j.rdc.2014.01.001 |
[2] | Robinson, P.C. and Horsburgh, S. (2014) Gout: Joints and Beyond, Epidemiology, Clinical Features, Treatment and Co-morbidities. Maturitas, 78, 245-251. https://doi.org/10.1016/j.maturitas.2014.05.001 |
[3] | Chandratre, P., Roddy, E., Clarson, L., Richardson, J., Hider, S.L. and Mallen, C.D. (2013) Health-Related Quality of Life in Gout: A Systematic Review. Rheumatology, 52, 2031-2040. https://doi.org/10.1093/rheumatology/ket265 |
[4] | Khanna, P.P., Nuki, G., Bardin, T., Tausche, A., Forsythe, A., Goren, A., et al. (2012) Tophi and Frequent Gout Flares Are Associated with Impairments to Quality of Life, Productivity, and Increased Healthcare Resource Use: Results from a Cross-Sectional Survey. Health and Quality of Life Outcomes, 10, Article No. 117. https://doi.org/10.1186/1477-7525-10-117 |
[5] | Wu, X. and You, C. (2022) The Biomarkers Discovery of Hyperuricemia and Gout: Proteomics and Metabolomics. PeerJ, 11, e14554. https://doi.org/10.7717/peerj.14554 |
[6] | Leask, M.P., Crișan, T.O., Ji, A., Matsuo, H., Köttgen, A. and Merriman, T.R. (2024) The Pathogenesis of Gout: Molecular Insights from Genetic, Epigenomic and Transcriptomic Studies. Nature Reviews Rheumatology, 20, 510-523. https://doi.org/10.1038/s41584-024-01137-1 |
[7] | Chen‐Xu, M., Yokose, C., Rai, S.K., Pillinger, M.H. and Choi, H.K. (2019) Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007-2016. Arthritis & Rheumatology, 71, 991-999. https://doi.org/10.1002/art.40807 |
[8] | Zhu, B., Wang, Y., Zhou, W., Jin, S., Shen, Z., Zhang, H., et al. (2022) Trend Dynamics of Gout Prevalence among the Chinese Population, 1990-2019: A Joinpoint and Age-Period-Cohort Analysis. Frontiers in Public Health, 10, Article ID: 1008598. https://doi.org/10.3389/fpubh.2022.1008598 |
[9] | Jatuworapruk, K. (2024) Gout Prevalence Is Rising in Low-Income and Middle-Income Countries: Are We Ready? The Lancet Rheumatology, 6, e494-e495. https://doi.org/10.1016/s2665-9913(24)00134-6 |
[10] | Lin, K., McCormick, N., Yokose, C., Joshi, A.D., Lu, N., Curhan, G.C., et al. (2023) Interactions between Genetic Risk and Diet Influencing Risk of Incident Female Gout: Discovery and Replication Analysis of Four Prospective Cohorts. Arthritis & Rheumatology, 75, 1028-1038. https://doi.org/10.1002/art.42419 |
[11] | Zhang, Y., Chen, S., Yuan, M., Xu, Y. and Xu, H. (2022) Gout and Diet: A Comprehensive Review of Mechanisms and Management. Nutrients, 14, Article No. 3525. https://doi.org/10.3390/nu14173525 |
[12] | Ko, G.J., Obi, Y., Tortorici, A.R. and Kalantar-Zadeh, K. (2017) Dietary Protein Intake and Chronic Kidney Disease. Current Opinion in Clinical Nutrition & Metabolic Care, 20, 77-85. https://doi.org/10.1097/mco.0000000000000342 |
[13] | Ferraro, P.M., Mandel, E.I., Curhan, G.C., Gambaro, G. and Taylor, E.N. (2016) Dietary Protein and Potassium, Diet-Dependent Net Acid Load, and Risk of Incident Kidney Stones. Clinical Journal of the American Society of Nephrology, 11, 1834-1844. https://doi.org/10.2215/cjn.01520216 |
[14] | Zhang, Y., Chen, C., Choi, H., Chaisson, C., Hunter, D., Niu, J., et al. (2012) Purine-Rich Foods Intake and Recurrent Gout Attacks. Annals of the Rheumatic Diseases, 71, 1448-1453. https://doi.org/10.1136/annrheumdis-2011-201215 |
[15] | Zheng, L., Regenstein, J.M., Zhou, L. and Wang, Z. (2022) Soy Protein Isolates: A Review of Their Composition, Aggregation, and Gelation. Comprehensive Reviews in Food Science and Food Safety, 21, 1940-1957. https://doi.org/10.1111/1541-4337.12925 |
[16] | Messina, M., Duncan, A., Messina, V., Lynch, H., Kiel, J. and Erdman, J.W. (2022) The Health Effects of Soy: A Reference Guide for Health Professionals. Frontiers in Nutrition, 9, Article ID: 970364. https://doi.org/10.3389/fnut.2022.970364 |
[17] | Polak, R., Phillips, E.M. and Campbell, A. (2015) Legumes: Health Benefits and Culinary Approaches to Increase Intake. Clinical Diabetes, 33, 198-205. https://doi.org/10.2337/diaclin.33.4.198 |
[18] | Huang, H., Krishnan, H.B., Pham, Q., Yu, L.L. and Wang, T.T.Y. (2016) Soy and Gut Microbiota: Interaction and Implication for Human Health. Journal of Agricultural and Food Chemistry, 64, 8695-8709. https://doi.org/10.1021/acs.jafc.6b03725 |
[19] | Xiao, C.W. (2008) Health Effects of Soy Protein and Isoflavones in Humans. The Journal of Nutrition, 138, 1244S-1249S. https://doi.org/10.1093/jn/138.6.1244s |
[20] | Garrel, D.R., Verdy, M., PetitClerc, C., Martin, C., Brulé, D. and Hamet, P. (1991) Milk-and Soy-Protein Ingestion: Acute Effect on Serum Uric Acid Concentration. The American Journal of Clinical Nutrition, 53, 665-669. https://doi.org/10.1093/ajcn/53.3.665 |
[21] | Choi, H.K., Atkinson, K., Karlson, E.W., Willett, W. and Curhan, G. (2004) Purine-Rich Foods, Dairy and Protein Intake, and the Risk of Gout in Men. New England Journal of Medicine, 350, 1093-1103. https://doi.org/10.1056/nejmoa035700 |
[22] | Yamakita, J., Yamamoto, T., Moriwaki, Y., Takahashi, S., Tsutsumi, Z. and Higashino, K. (1998) Effect of Tofu (Bean Curd) Ingestion on Uric Acid Metabolism in Healthy and Gouty Subjects. In: Advances in Experimental Medicine and Biology, Springer, 839-842. https://doi.org/10.1007/978-1-4615-5381-6_161 |
[23] | Duan, Y., Qi, Q., Liu, Z., Zhang, M. and Liu, H. (2022) Soy Consumption and Serum Uric Acid Levels: A Systematic Review and Meta-Analysis. Frontiers in Nutrition, 9, Article ID: 975718. https://doi.org/10.3389/fnut.2022.975718 |
[24] | van den Berg, L.A., Mes, J.J., Mensink, M. and Wanders, A.J. (2022) Protein Quality of Soy and the Effect of Processing: A Quantitative Review. Frontiers in Nutrition, 9, Article ID: 1004754. https://doi.org/10.3389/fnut.2022.1004754 |
[25] | Zhao, S.S., Mackie, S.L. and Zheng, J. (2021) Why Clinicians Should Know about Mendelian Randomization. Rheumatology, 60, 1577-1579. https://doi.org/10.1093/rheumatology/keab007 |
[26] | Ou, G., Wu, J., Wang, S., Jiang, Y., Chen, Y., Kong, J., et al. (2024) Dietary Factors and Risk of Gout: A Two-Sample Mendelian Randomization Study. Foods, 13, Article No. 1269. https://doi.org/10.3390/foods13081269 |
[27] | Skrivankova, V.W., Richmond, R.C., Woolf, B.A.R., Yarmolinsky, J., Davies, N.M., Swanson, S.A., et al. (2021) Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA, 326, 1614-1621. https://doi.org/10.1001/jama.2021.18236 |
[28] | Lin, S., Brown, D.W. and Machiela, M.J. (2020) Ldtrait: An Online Tool for Identifying Published Phenotype Associations in Linkage Disequilibrium. Cancer Research, 80, 3443-3446. https://doi.org/10.1158/0008-5472.can-20-0985 |
[29] | Bowden, J., Del Greco M, F., Minelli, C., Zhao, Q., Lawlor, D.A., Sheehan, N.A., et al. (2018) Improving the Accuracy of Two-Sample Summary-Data Mendelian Randomization: Moving beyond the NOME Assumption. International Journal of Epidemiology, 48, 728-742. https://doi.org/10.1093/ije/dyy258 |
[30] | Burgess, S. and Thompson, S.G. (2011) Avoiding Bias from Weak Instruments in Mendelian Randomization Studies. International Journal of Epidemiology, 40, 755-764. https://doi.org/10.1093/ije/dyr036 |
[31] | Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525. https://doi.org/10.1093/ije/dyv080 |
[32] | Bowden, J., Davey Smith, G., Haycock, P.C. and Burgess, S. (2016) Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epidemiology, 40, 304-314. https://doi.org/10.1002/gepi.21965 |
[33] | Verbanck, M., Chen, C., Neale, B. and Do, R. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nature Genetics, 50, 693-698. https://doi.org/10.1038/s41588-018-0099-7 |
[34] | VanderWeele, T.J., Tchetgen Tchetgen, E.J., Cornelis, M. and Kraft, P. (2014) Methodological Challenges in Mendelian Randomization. Epidemiology, 25, 427-435. https://doi.org/10.1097/ede.0000000000000081 |
[35] | Sarwar, G. and Brulé, D. (1991) Assessment of the Uricogenic Potential of Processed Foods Based on the Nature and Quantity of Dietary Purines. Progress in Food & Nutrition Science, 15, 159-181. |
[36] | Messina, M., Messina, V.L. and Chan, P. (2011) Soyfoods, Hyperuricemia and Gout: A Review of the Epidemiologic and Clinical Data. Asia Pacific Journal of Clinical Nutrition, 20, 347-358. |
[37] | Liu, Z.M., Ho, C.S., Chen, Y.M. and Woo, J. (2014) Can Soy Intake Affect Serum Uric Acid Level? Pooled Analysis from Two 6-Month Randomized Controlled Trials among Chinese Postmenopausal Women with Prediabetes or Prehypertension. European Journal of Nutrition, 54, 51-58. https://doi.org/10.1007/s00394-014-0684-1 |
[38] | Villegas, R., Xiang, Y.-., Elasy, T., Xu, W.H., Cai, H., Cai, Q., et al. (2012) Purine-Rich Foods, Protein Intake, and the Prevalence of Hyperuricemia: The Shanghai Men’s Health Study. Nutrition, Metabolism and Cardiovascular Diseases, 22, 409-416. https://doi.org/10.1016/j.numecd.2010.07.012 |
[39] | Zhang, M., Lin, L. and Liu, H.Q. (2018) Acute Effect of Soy and Soy Products on Serum Uric Acid Concentration among Healthy Chinese Men. Asia Pacific Journal of Clinical Nutrition, 27, 1239-1242. |
[40] | Rong, S., et al. (2012) The Content of Purines in Common Plant-Based Foods in China. Journal of Hygiene Research, 41, 92-95+101. |
[41] | Sayuti, K., Yenrina, R., Refdi, C.W. and Fajri, P.Y. (2019) Adenine, Guanine, Xanthine and Hypoxanthine Content in Various Indonesian Foods. Pakistan Journal of Nutrition, 18, 260-263. https://doi.org/10.3923/pjn.2019.260.263 |
[42] | Kaneko, K., Takayanagi, F., Fukuuchi, T., Yamaoka, N., Yasuda, M., Mawatari, K., et al. (2020) Determination of Total Purine and Purine Base Content of 80 Food Products to Aid Nutritional Therapy for Gout and Hyperuricemia. Nucleosides, Nucleotides & Nucleic Acids, 39, 1449-1457. https://doi.org/10.1080/15257770.2020.1748197 |
[43] | Kaneko, K., Tsuruga, K., Takayanagi, F., Fukuuchi, T., Yamaoka, N., Seki, R., et al. (2024) Daily Amount of Purine in Commonly Recommended Well-Balanced Diets in Japan and Overseas. Nutrients, 16, Article No. 4066. https://doi.org/10.3390/nu16234066 |
[44] | Wen, Z., Wei, Y., Sun, Y. and Ji, W. (2024) Dietary Pattern and Risk of Hyperuricemia: An Updated Systematic Review and Meta-Analysis of Observational Studies. Frontiers in Nutrition, 11, Article ID: 1218912. https://doi.org/10.3389/fnut.2024.1218912 |
[45] | Zhang, M., Gao, Y., Wang, X., Liu, W., Zhang, Y. and Huang, G. (2016) Comparison of the Effect of High Fruit and Soybean Products Diet and Standard Diet Interventions on Serum Uric Acid in Asymptomatic Hyperuricemia Adults: An Open Randomized Controlled Trial. International Journal of Food Sciences and Nutrition, 67, 335-343. https://doi.org/10.3109/09637486.2016.1153608 |
[46] | Teng, G.G., Pan, A., Yuan, J. and Koh, W. (2015) Food Sources of Protein and Risk of Incident Gout in the Singapore Chinese Health Study. Arthritis & Rheumatology, 67, 1933-1942. https://doi.org/10.1002/art.39115 |
[47] | Chuang, S.Y., Lee, S.C., Hsieh, Y.T. and Pan, W.H. (2011) Trends in Hyperuricemia and Gout Prevalence: Nutrition and Health Survey in Taiwan from 1993-1996 to 2005-2008. Asia Pacific Journal of Clinical Nutrition, 20, 301-308. |
[48] | Yen, Y., Lai, Y., Hsu, L., Chen, L., Ku, P. and Inan-Eroglu, E. (2023) Association between Vegetarian Diet and Gouty Arthritis: A Retrospective Cohort Study. Nutrition, Metabolism and Cardiovascular Diseases, 33, 1923-1931. https://doi.org/10.1016/j.numecd.2023.04.008 |
[49] | Wang, F., Sun, L., Zong, G., Gao, X., Zhang, H., Xiong, Q., et al. (2020) Associations of Amino Acid and Acylcarnitine Profiles with Incident Hyperuricemia in Middle‐aged and Older Chinese Individuals. Arthritis Care & Research, 72, 1305-1314. https://doi.org/10.1002/acr.24013 |
[50] | Jakše, B., Jakše, B., Pajek, M. and Pajek, J. (2019) Uric Acid and Plant-Based Nutrition. Nutrients, 11, Article No. 1736. https://doi.org/10.3390/nu11081736 |
[51] | 李玲琴, 周睿姣, 张燕妮, 等. 基于xCell算法研究痛风的免疫生物标志物及相关靶向中药的筛选[J]. 中国药师, 2024, 27(6): 1007-1018. |
[52] | Mehmood, A., Zhao, L., Wang, C., Nadeem, M., Raza, A., Ali, N., et al. (2017) Management of Hyperuricemia through Dietary Polyphenols as a Natural Medicament: A Comprehensive Review. Critical Reviews in Food Science and Nutrition, 59, 1433-1455. https://doi.org/10.1080/10408398.2017.1412939 |
[53] | 黄宽晨, 练瑶瑶, 卢玙璠, 等. 大豆活性成分的抗炎作用及其机制研究进展[J]. 粮食科技与经济, 2020, 45(12): 71-74, 133. |
[54] | Ikenaga, T., Noguchi, H., Kakumoto, K., Kohda, N., Tsukikawa, H., Matsuguma, K., et al. (2019) Effect of Phytic Acid on Postprandial Serum Uric Acid Level in Healthy Volunteers: A Randomized, Double-Blind, Crossover Study. Nucleosides, Nucleotides & Nucleic Acids, 39, 504-517. https://doi.org/10.1080/15257770.2019.1656337 |
[55] | 张彤, 覃姝瑜, 周立红, 何瑞婷. 基于网络药理学研究楤木多糖影响痛风的分子机制[J]. 壮瑶药研究, 2023(3): 235-238. |
[56] | Kahleova, H., Fleeman, R., Hlozkova, A., Holubkov, R. and Barnard, N.D. (2018) A Plant-Based Diet in Overweight Individuals in a 16-Week Randomized Clinical Trial: Metabolic Benefits of Plant Protein. Nutrition & Diabetes, 8, Article No. 58. https://doi.org/10.1038/s41387-018-0067-4 |