全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网络药理学和分子对接探究银耳治疗便秘的作用机制
To Explore the Mechanism of Tremella fuciformis Ameliorating Constipation by Network Pharmacology Analysis and Molecular Docking

DOI: 10.12677/hjfns.2025.142026, PP. 214-229

Keywords: 银耳,便秘,网络药理学,作用机制,分子对接
Tremella fuciformis
, Constipation, Network Pharmacology, Mechanism of Action, Molecular Docking

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探讨银耳改善便秘的潜在活性成分和可能的作用机制。方法:在知网、万方、维普、TCMSP、PubChem、HERB、DisGeNET等数据库检索银耳和木耳潜在活性成分、靶点以及便秘相关靶点。将交集靶点导入STRING和Cytoscape3.10.3软件中进行分析,并利用CytoHCA、CytoHubba和MCODE插件挖掘银耳改善便秘的核心基因。应用DAVID数据库进行GO和KEGG富集剖析,利用Auto Dock Tools-1.5.6和PyMOL软件进行分子对接和可视化分析。结果:得到银耳和木耳活性成分23个,化合物预测靶点402个,便秘靶点7804个,银耳活性成分和便秘交集靶点305个。拓扑学分析后得到10个改善便秘的核心靶点蛋白。GO和KEGG富集分析显示涉及多个生物过程、细胞组分和分子功能。关键信号通路包含AKT1、STAT3、IL6和TNF等。分子对接结果提示活性成分与作用靶点结合效果良好,特别是槲皮素和野黄芩素与AKT1的结合能很低,提示槲皮素和野黄芩素有可能通过调节蛋白激酶B相关信号通路改善便秘。结论:本研究通过网络药理学分析和分子对接发现了银耳多糖之外的重要活性成分,包括榈油酸、槲皮素、野黄芩素、顺式-13-十八碳烯酸和油酸等,这些活性成分可能通过调节STAT3、GAPDH、BCL2、IL6、TP53、TNF、EGFR、AKT1、ESR1和MMP9等靶点改善便秘。这些潜在活性成分和靶点在过去的相关研究中涉及较少,值得深入研究。
Objective: To explore the potential active ingredients and possible mechanisms of Tremella fuciformis in improving constipation. Method: Search for potential active ingredients, targets, and constipation related targets of Tremella fuciformis and Auricularia auricula in databases such as CNKI, Wanfang, CQVIP, TCMSP, PubChem, HERB, and DisGeNET. We import the intersection targets into STRING and Cytoscape 3.10.3 software for analysis, and use Cytohuba plugin to explore the core genes that improve constipation in Tremella fuciformis, perform GO and KEGG enrichment analysis using DAVID database, and perform molecular docking and visualization analysis using Auto Dock Tools-1.5.6 and PyMOL software. Results: The results showed that there were 23 active ingredients in Tremella fuciformis and Auricularia auricula, 402 predicted targets for compounds, 7804 targets for constipation, and 305 intersecting targets between Tremella fuciformis active ingredients and constipation. After topological analysis, 10 core target proteins for constipation improvement were obtained. GO and KEGG enrichment analysis showed involvement in multiple biological processes, cellular components, and molecular functions. The key signaling pathways include AKT1, STAT3, IL6, and TNF. The molecular docking results indicate that the active ingredients have a good binding effect with the target, especially quercetin and baicalein, which have low binding energies with AKT1. This suggests that quercetin and baicalein may improve constipation by regulating the protein kinase B-related signaling pathway. Conclusion: Through network pharmacology analysis and molecular docking, this study identified important active ingredients in addition to Tremella fuciformis polysaccharides, including palmitoleic acid,

References

[1]  Zou, Y. and Hou, X. (2017) Extraction Optimization, Composition Analysis, and Antioxidation Evaluation of Polysaccharides from White Jelly Mushroom, Tremella fuciformis (Tremellomycetes). International Journal of Medicinal Mushrooms, 19, 1113-1121.
https://doi.org/10.1615/intjmedmushrooms.2017024590
[2]  李曦, 邓兰, 周娅, 等. 金耳、银耳与木耳的营养成分比较[J]. 食品研究与开发, 2021, 42(16): 77-82.
[3]  祁亮亮, 李俐颖, 吴小建, 等. 不同光质处理下银耳子实体农艺性状和营养成分含量及其相关性[J]. 食用菌学报, 2022, 29(1): 41-47.
[4]  孙海斓, 席嘉佩, 张军淼, 等. 新鲜银耳与热风干燥银耳营养成分和风味特征比较[J]. 食品科学技术学报, 2023, 41(1): 43-55.
[5]  Yoon, Y., Han, N., Lee, J.H., Bae, S. and Lee, J. (2023) Review of the Effects of Tremella fuciformis Berk Extract as a Functional Phytochemical. Asian Journal of Beauty and Cosmetology, 21, 151-164.
https://doi.org/10.20402/ajbc.2022.0055
[6]  Fu, G., Li, Y., He, Y., Zhang, H. and Ma, X. (2025) Extraction, Structure and Bioactivity of Tremella fuciformis Polysaccharides: A Review. Food & Medicine Homology.
https://doi.org/10.26599/fmh.2025.9420038
[7]  Chen, L., Chen, J., Li, J., Xie, J., Yu, M., Zhou, M., et al. (2022) Physicochemical Properties and in Vitro Digestion Behavior of a New Bioactive Tremella fuciformis Gum. International Journal of Biological Macromolecules, 207, 611-621.
https://doi.org/10.1016/j.ijbiomac.2022.02.166
[8]  Xiao, H., Li, H., Wen, Y., Jiang, D., Zhu, S., He, X., et al. (2021) Tremella fuciformis Polysaccharides Ameliorated Ulcerative Colitis via Inhibiting Inflammation and Enhancing Intestinal Epithelial Barrier Function. International Journal of Biological Macromolecules, 180, 633-642.
https://doi.org/10.1016/j.ijbiomac.2021.03.083
[9]  Zhang, S., Xu, X., Cao, X. and Liu, T. (2023) The Structural Characteristics of Dietary Fibers from Tremella fuciformis and Their Hypolipidemic Effects in Mice. Food Science and Human Wellness, 12, 503-511.
https://doi.org/10.1016/j.fshw.2022.07.052
[10]  Wang, X., Zhang, Z., Lei, H., Zhu, C., Fu, R., Ma, X., et al. (2025) Treatment of Ulcerative Colitis via the in Situ Restoration of Local Immune and Microbial Homeostasis by Oral Administration of Tremella Polysaccharide Drug-Carrying Hydrogel. International Journal of Biological Macromolecules, 285, Article ID: 138223.
https://doi.org/10.1016/j.ijbiomac.2024.138223
[11]  Hung, C., Chang, A., Kuo, X. and Sheu, F. (2014) Molecular Cloning and Function Characterization of a New Macrophage-Activating Protein from Tremella fuciformis. Journal of Agricultural and Food Chemistry, 62, 1526-1535.
https://doi.org/10.1021/jf403835c
[12]  Román-Hidalgo, C., Villar-Navarro, M., Falcón-García, G.E., Carbonero-Aguilar, M.P., Bautista-Palomas, J.D., Bello-López, M.A., et al. (2021) Selective, Rapid and Simultaneous Determination of Ergosterol and Ergocalciferol in Mushrooms by UPLC-Q-TOF-MS. Journal of Pharmaceutical and Biomedical Analysis, 194, Article ID: 113748.
https://doi.org/10.1016/j.jpba.2020.113748
[13]  Begum, M., Saikia, R. and Saikia, S.P. (2024) Triple Quadrupole Liquid Chromatography-Mass Spectrometry-Mediated Evaluation of Vitamin D2 Accumulation Potential, Antioxidant Capacities, and Total Polyphenol Content of White Jelly Mushroom (Tremella fuciformis Berk.). Mycologia, 116, 464-474.
https://doi.org/10.1080/00275514.2024.2313435
[14]  吉米丽汗∙司马依, 买买提明∙努尔买买提, 艾尼瓦尔∙吾买尔, 等. 基于ADME和“Lipinski规则”的金叶败毒颗粒辅助治疗新型冠状病毒肺炎的活性成分研究[J]. 天然产物研究与开发, 2020, 32(10): 1629-1936.
[15]  张玉娟. 基于网络药理学和分子对接法探讨增液汤治疗功能性便秘的作用机制[D]: [硕士学位论文]. 咸阳: 陕西中医药大学, 2023.
[16]  冯译. 基于网络药理学和分子对接探讨眩晕灵治疗眩晕病的作用机制[D]: [硕士学位论文]. 咸阳: 陕西中医药大学, 2023.
[17]  张彤, 覃姝瑜, 周立红, 何瑞婷. 基于网络药理学研究楤木多糖影响痛风的分子机制[J]. 壮瑶药研究, 2023(3): 235-238.
[18]  高云杉. 银耳源葡萄糖醛酸的制备及其生物活性研究[D]: [硕士学位论文]. 福州: 福建农林大学, 2020.
[19]  刘美, 刘嵬, 梁立, 等. 银耳子实体油脂成分分析及其抗氧化活性研究[J]. 生物化工, 2022, 8(4): 82-85.
[20]  王斐斐. 金燕耳银耳的化学成分与活性研究[D]: [硕士学位论文]. 福州: 福建师范大学, 2023.
[21]  Lee, J., Ha, S.J., Lee, H.J., Kim, M.J., Kim, J.H., Kim, Y.T., et al. (2016) Protective Effect of Tremella fuciformis Berk Extract on LPS-Induced Acute Inflammation via Inhibition of the NF-κB and MAPK Pathways. Food & Function, 7, 3263-3272.
https://doi.org/10.1039/c6fo00540c
[22]  Lo, Y., Lin, S., Ulziijargal, E., Chen, S., Chien, R., Tzou, Y., et al. (2012) Comparative Study of Contents of Several Bioactive Components in Fruiting Bodies and Mycelia of Culinary-Medicinal Mushrooms. International Journal of Medicinal Mushrooms, 14, 357-363.
https://doi.org/10.1615/intjmedmushr.v14.i4.30
[23]  Huang, T., Yang, F., Chiu, H., Chao, H., Yang, Y., Sheu, J., et al. (2022) An Immunological Polysaccharide from Tremella fuciformis: Essential Role of Acetylation in Immunomodulation. International Journal of Molecular Sciences, 23, Article 10392.
https://doi.org/10.3390/ijms231810392
[24]  黄金连, 周立红. 环境营养学研究进展[J]. 食品与营养科学, 2025, 14(1): 101-109.
[25]  周立红. 烹饪医学学科发展历程与思路研究[J]. 食品与营养科学, 2024, 13(1): 133-142.
[26]  Song, H., Lu, J., Chu, Q., Deng, R. and Shen, X. (2024) Structural Characterization of a Novel Polysaccharide from Tremella fuciformis and Its Interaction with Gut Microbiota. Journal of the Science of Food and Agriculture, 104, 6553-6562.
https://doi.org/10.1002/jsfa.13479
[27]  He, G., Chen, T., Huang, L., Zhang, Y., Feng, Y., Qu, S., et al. (2022) Tremella fuciformis Polysaccharide Reduces Obesity in High-Fat Diet-Fed Mice by Modulation of Gut Microbiota. Frontiers in Microbiology, 13, Article 1073350.
https://doi.org/10.3389/fmicb.2022.1073350
[28]  Zhou, A.L., Hergert, N., Rompato, G. and Lefevre, M. (2015) Whole Grain Oats Improve Insulin Sensitivity and Plasma Cholesterol Profile and Modify Gut Microbiota Composition in C57BL/6J Mice. The Journal of Nutrition, 145, 222-230.
https://doi.org/10.3945/jn.114.199778
[29]  Amirullah, N.A., Abdullah, E., Zainal Abidin, N., Abdullah, N. and Manickam, S. (2024) Therapeutic Potential of Mushrooms: A Review on NF-κB Modulation in Chronic Inflammation. Food Bioscience, 62, Article ID: 105059.
https://doi.org/10.1016/j.fbio.2024.105059
[30]  Liu, H., Cheng, M., Xun, M., Zhao, Z., Zhang, Y., Tang, W., et al. (2023) Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. International Journal of Molecular Sciences, 24, Article 3755.
https://doi.org/10.3390/ijms24043755
[31]  Liang, S., He, Z., Liang, Z., Wang, K., Du, B., Guo, R., et al. (2024) Prunus persica (L.) Batsch Blossom Soluble Dietary Fiber Synergia Polyphenol Improving Loperamide-Induced Constipation in Mice via Regulating Stem Cell Factor/C-Kit, NF-κB Signaling Pathway and Gut Microbiota. Food Research International, 192, Article ID: 114761.
https://doi.org/10.1016/j.foodres.2024.114761
[32]  Hou, R., Liu, X., Yan, J., Xiang, K., Wu, X., Lin, W., et al. (2019) Characterization of Natural Melanin from Auricularia auricula and Its Hepatoprotective Effect on Acute Alcohol Liver Injury in Mice. Food & Function, 10, 1017-1027.
https://doi.org/10.1039/c8fo01624k

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133