全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网络药理学研究楤木调控痛风的分子机制
The Molecular Mechanism of Aralia chinensis L. Regulating Gout Was Studied by Network Pharmacology

DOI: 10.12677/hjfns.2025.142024, PP. 188-200

Keywords: 楤木,痛风,网络药理学,作用机制,分子对接
Aralia chinensis
, Gout, Network Pharmacology, Mechanism of Action, Molecular Docking

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探讨楤木治疗痛风的潜在活性成分和可能的作用机制。方法:在知网、万方、TCMSP、PubChem、DisGeNET等数据库检索楤木潜在活性成分、靶点以及痛风相关靶点。将交集靶点导入STRING和Cytoscape3.9.1软件中进行分析,并利用Cytohubba插件挖掘楤木治疗痛风的核心基因。应用DAVID数据库进行GO和KEGG富集剖析,利用Auto Dock Tools-1.5.6和PyMOL软件进行分子对接和可视化分析。结果:得到楤木活性成分109个,化合物预测靶点475个,交集靶点33个。拓扑学分析后得到9个治疗痛风的核心靶点。GO和KEGG富集分析显示涉及多个生物过程、细胞组分和分子功能。关键信号通路包含IL-17、Rap1、VEGF和TNF等。分子对接均呈现较好的结合活性。结论:楤木治疗痛风具有“多靶点、多成分、多通路”的特点,为后续进一步实验研究提供了理论基础。
Objective: To explore the potential active ingredients of Aralia chinensis in the treatment of gout and the possible mechanism of action. Methods: The potential active ingredients, targets and gout related targets of Aralia chinensis were searched in knowledge network, Wanfang, TCMSP, PubChem, DisGeNET and other databases. The intersection targets were imported into STRING and Cytoscape3.9.1 software for analysis, and the core genes of Aralia chinensis in the treatment of gout were discovered by Cytohubba plug-in. GO and KEGG enrichment were analyzed using DAVID database, and molecular docking and visual analysis were performed using Auto Dock Tools-1.5.6 and PyMOL software. Results: 109 active components, 475 predicted targets and 33 intersection targets of Aralia chinensis were obtained. After topological analysis, 9 core targets for the treatment of gout were obtained. GO and KEGG enrichment analyses showed that multiple biological processes, cell components and molecular functions were involved. Key signaling pathways include IL-17, Rap1, VEGF and TNF. The molecular docking showed good binding activity. Conclusion: Aralia chinensis has the characteristics of “multi-target, multi-component and multi-pathway” in the treatment of gout, which provides a theoretical basis for further experimental research.

References

[1]  Ragab, G., Elshahaly, M. and Bardin, T. (2017) Gout: An Old Disease in New Perspective—A Review. Journal of Advanced Research, 8, 495-511.
https://doi.org/10.1016/j.jare.2017.04.008
[2]  周芬. 高尿酸血症与痛风[J]. 家庭医学(下半月), 2023(10): 24-25.
[3]  Goarant, C. and Acharya, S. (2024) Gout Is a Neglected Non-Communicable Disease in the Pacific. The Lancet Global Health, 12, e550-e551.
https://doi.org/10.1016/s2214-109x(24)00058-5
[4]  Han, T., Chen, W., Qiu, X. and Wang, W. (2024) Epidemiology of Gout—Global Burden of Disease Research from 1990 to 2019 and Future Trend Predictions. Therapeutic Advances in Endocrinology and Metabolism, 15.
https://doi.org/10.1177/20420188241227295
[5]  Zhu, B., Wang, Y., Zhou, W., Jin, S., Shen, Z., Zhang, H., et al. (2022) Trend Dynamics of Gout Prevalence among the Chinese Population, 1990-2019: A Joinpoint and Age-Period-Cohort Analysis. Frontiers in Public Health, 10, Article 1008598.
https://doi.org/10.3389/fpubh.2022.1008598
[6]  杜明瑞, 赵哲, 李华燕, 等. 基于NLRP3/IL-1β信号通路探讨清热利湿化浊法(加味四妙散)对湿热痹阻型慢性痛风性关节炎的作用机制[J]. 中国实验方剂学杂志, 2023, 29(11): 133-140.
[7]  郑玲玲, 裴凌鹏. 楤木属植物研究进展[J]. 中国民族医药杂志, 2010, 16(6): 57-59.
[8]  刘勇, 肖培根. 楤木属中草药的整理研究[J]. 中草药, 2001, 32(9): 847-850.
[9]  Wang, X., Pan, C., Gong, J., Liu, X. and Li, H. (2016) Enhancing the Enrichment of Pharmacophore-Based Target Prediction for the Polypharmacological Profiles of Drugs. Journal of Chemical Information and Modeling, 56, 1175-1183.
https://doi.org/10.1021/acs.jcim.5b00690
[10]  Wang, X., Shen, Y., Wang, S., Li, S., Zhang, W., Liu, X., et al. (2017) Pharmmapper 2017 Update: A Web Server for Potential Drug Target Identification with a Comprehensive Target Pharmacophore Database. Nucleic Acids Research, 45, W356-W360.
https://doi.org/10.1093/nar/gkx374
[11]  Liu, X., Ouyang, S., Yu, B., Liu, Y., Huang, K., Gong, J., et al. (2010) Pharmmapper Server: A Web Server for Potential Drug Target Identification Using Pharmacophore Mapping Approach. Nucleic Acids Research, 38, W609-W614.
https://doi.org/10.1093/nar/gkq300
[12]  Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. (2018) STRING V11: Protein-protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Research, 47, D607-D613.
https://doi.org/10.1093/nar/gky1131
[13]  Saito, R., Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P., Lotia, S., et al. (2012) A Travel Guide to Cytoscape Plugins. Nature Methods, 9, 1069-1076.
https://doi.org/10.1038/nmeth.2212
[14]  Chin, C., Chen, S., Wu, H., Ho, C., Ko, M. and Lin, C. (2014) cytoHubba: Identifying Hub Objects and Sub-Networks from Complex Interactome. BMC Systems Biology, 8, Article No. S11.
https://doi.org/10.1186/1752-0509-8-s4-s11
[15]  Trott, O. and Olson, A.J. (2009) Autodock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 31, 455-461.
https://doi.org/10.1002/jcc.21334
[16]  宋歌. 红楤木和白楤木治疗类风湿关节炎作用差异初步探究[D]: [硕士学位论文]. 恩施: 湖北民族大学, 2023.
[17]  刘艳, 曾晓丽, 李新明, 等. 楤木根的化学成分研究[J]. 云南民族大学学报(自然科学版), 2015, 24(2): 98-100.
[18]  戚欢阳, 陈文豪, 师彦平. 楤木化学成分及抑菌活性研究[J]. 中草药, 2010, 41(12): 1948-1950.
[19]  洪良健, 窦芳, 田向荣, 等. 楤木化学成分的研究[J]. 中南药学, 2012, 10(3): 198-201.
[20]  刘娟, 刘艳, 黄相中, 等. 云南楤木的化学成分研究[J]. 云南民族大学学报(自然科学版), 2016, 25(4): 301-305.
[21]  葛蕾, 葛洁英. 楤木根皮总皂苷的提取工艺优化[J]. 食品与药品, 2015, 17(3): 162-165.
[22]  Hsin, K., Ghosh, S. and Kitano, H. (2013) Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology. PLOS ONE, 8, e83922.
https://doi.org/10.1371/journal.pone.0083922
[23]  邸志权, 李昊丰, 冯玥, 等. 新癀片抗炎镇痛作用机制的蛋白组学研究[J]. 现代药物与临床, 2016, 31(1): 5-10.
[24]  欧阳香, 丁婷, 杨海艳, 等. 痛风性关节炎发病机制相关信号通路的研究进展[J]. 中药药理与临床, 2021, 37(4): 234-240.
[25]  Namba, S., Nakano, R., Kitanaka, T., Kitanaka, N., Nakayama, T. and Sugiya, H. (2017) ERK2 and JNK1 Contribute to TNF-α-Induced IL-8 Expression in Synovial Fibroblasts. PLOS ONE, 12, e0182923.
https://doi.org/10.1371/journal.pone.0182923
[26]  邢译文, 刘鑫, 周林林, 等. miR-638慢病毒载体的构建及其对MAPK14的靶向调控作用[J]. 免疫学杂志, 2014, 30(9): 782-786.
[27]  胡南, 孙嘉, 康远程, 等. 普伐他汀对P38MAPK信号通路介导的胰岛微血管内皮细胞炎症损伤的保护作用[J]. 南方医科大学学报, 2013, 33(8): 1232-1235, 1239.
[28]  Ahmadian, M., Suh, J.M., Hah, N., Liddle, C., Atkins, A.R., Downes, M., et al. (2013) PPARγ Signaling and Metabolism: The Good, the Bad and the Future. Nature Medicine, 19, 557-566.
https://doi.org/10.1038/nm.3159
[29]  Fernandez-Boyanapalli, R., Frasch, S.C., Riches, D.W.H., Vandivier, R.W., Henson, P.M. and Bratton, D.L. (2010) PPARγ Activation Normalizes Resolution of Acute Sterile Inflammation in Murine Chronic Granulomatous Disease. Blood, 116, 4512-4522.
https://doi.org/10.1182/blood-2010-02-272005
[30]  Tatsiy, O., Mayer, T.Z., de Carvalho Oliveira, V., Sylvain-Prévost, S., Isabel, M., Dubois, C.M., et al. (2020) Cytokine Production and NET Formation by Monosodium Urate-Activated Human Neutrophils Involves Early and Late Events, and Requires Upstream TAK1 and SYK. Frontiers in Immunology, 10, Article 2996.
https://doi.org/10.3389/fimmu.2019.02996
[31]  宋佳愔. 基于数据挖掘及网络药理学探讨佟颖教授对痛风性关节炎的研究[D]: [硕士学位论文]. 哈尔滨: 黑龙江中医药大学, 2023.
[32]  Kim, Y. and Kim, K. (2024) A Bee Trp-Arg Dense Peptide with Antiproliferation Efficacy against the Prostate Cancer Cell Line DU145. Current Issues in Molecular Biology, 46, 2251-2262.
https://doi.org/10.3390/cimb46030144
[33]  张彤, 覃姝瑜, 周立红, 何瑞婷. 基于网络药理学研究楤木多糖影响痛风的分子机制[J]. 壮瑶药研究, 2023(3): 235-238.
[34]  黄金连, 周立红. 环境营养学研究进展[J]. 食品与营养科学, 2025, 14(1): 101-109.
[35]  周立红. 烹饪医学学科发展历程与思路研究[J]. 食品与营养科学, 2024, 13(1): 133-142.
[36]  何兵, 田吉, 刘艳, 李春红. 高效液相色谱法同时测定楤木不同部位4种成分的含量[J]. 中国医院药学杂志, 2011, 31(21): 1820-1822.
[37]  Ooi, K.L., Zakaria, R., Tan, M.L. and Sulaiman, S.F. (2021) The Influence of Chemical Composition of Potent Inhibitors in the Hydrolyzed Extracts of Anti-Hyperuricemic Plants to Their Xanthine Oxidase Activities. Journal of Ethnopharmacology, 278, Article ID: 114294.
https://doi.org/10.1016/j.jep.2021.114294
[38]  Abu Bakar, F.I., Abu Bakar, M.F., Abdullah, N., Endrini, S. and Fatmawati, S. (2020) Optimization of Extraction Conditions of Phytochemical Compounds and Anti‐Gout Activity of Euphorbia hirta L. (Ara Tanah) Using Response Surface Methodology and Liquid Chromatography‐mass Spectrometry (LC‐MS) Analysis. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 4501261.
https://doi.org/10.1155/2020/4501261
[39]  Huang, L., Feng, Z., Xiang, J., et al. (2023) Anti-Inflammatory Compounds from the Rhizome of Acorus calamus var. Angustatus Besser and Their Mechanism. Natural Product Research, 38, 3669-3675.
[40]  张馨心, 宫福帅, 欧小女, 秦佳梅. 表面活性剂强化超声波提取龙牙楤木齐墩果酸的研究[J]. 人参研究, 2021, 33(2): 44-46.
[41]  汪鋆植, 张琳, 孙文军, 等. 齿孔酸对大鼠佐剂型关节炎的影响[J]. 中药药理与临床, 2016, 32(2): 23-27.
[42]  朱楠, 罗骏. 齐墩果酸和熊果酸衍生物抗炎活性的定量构效关系研究[J]. 云南民族大学学报(自然科学版), 2013, 22(1): 10-13.
[43]  梁小飞, 白玮, 李玉泽, 等. 太白楤木指纹图谱及含量测定研究[J]. 中药新药与临床药理, 2019, 30(12): 1528-1533.
[44]  Ding, Y., Zhao, Q. and Wang, L. (2019) Pro-Apoptotic and Anti-Inflammatory Effects of Araloside a on Human Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Chemico-Biological Interactions, 306, 131-137.
https://doi.org/10.1016/j.cbi.2019.04.025
[45]  Chen, J., Chen, J., Feng, B., Ning, M., Wu, W. and Zou, S. (2024) Investigation of Resveratrol as a Xanthine Oxidase Inhibitor: Mechanistic Insights and Therapeutic Implications for Gout and Hyperuricemia. Biotechnology and Applied Biochemistry.
https://doi.org/10.1002/bab.2690

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133