|
硅藻及其多样性对湖泊环境因子的指示作用
|
Abstract:
湖泊在高原生态系统中具有重要地位,然而湖泊也面临诸多挑战,如水质下降、重金属污染、生态退化等。湖泊以及其水体内的物种组成能够记录区域环境变化并调节区域气候。浮游植物是湖泊重要的初级生产者,其群落构建是反映湖泊污染水平和生态系统特征的可靠指标。硅藻作为浮游植物的重要组成,对营养盐、重金属、水温等环境变化极为敏感,其物种群落组成和多样性在环境因子影响下的季节变化模式,是开展湖泊生态健康和环境质量评价的重要内容。因此了解硅藻在不同环境因子影响下的变化模式和指示意义是进行不同水环境梯度下物种变化特征的响应监测的重要环节,可以为湖泊水体生态环境保护提供理论支持,从而有助于更加精准地探究湖泊生态系统的动态变化规律。
Lakes play a crucial role in plateau ecosystems, yet they face multiple challenges such as declining water quality, heavy metal pollution, and ecological degradation. Lakes and their aquatic species composition not only document regional environmental changes but also regulate local climate. As key primary producers in lakes, phytoplankton exhibit community assembly patterns that serve as reliable indicators of pollution levels and ecosystem characteristics. Diatoms, being vital components of phytoplankton, demonstrate high sensitivity to environmental variations including nutrient concentrations, heavy metals, and water temperature. The seasonal dynamics of diatom community structure and species diversity under environmental influences constitute essential content for evaluating lake ecological health and environmental quality. Understanding the response patterns and ecological indications of diatoms under different environmental factors represents a critical step in monitoring species variation across water environmental gradients. This knowledge provides theoretical support for lake ecological protection and facilitates precise exploration of dynamic changes in lake ecosystems.
[1] | 赵光洲, 徐海涛. 云南高原湖泊湖区可持续发展模式研究[J]. 未来与发展, 2011, 34(7): 93-96. |
[2] | 张涛, 陈丽, 刘晓曦, 等. 云南中部和南部湖泊夏季浮游植物空间分布及其影响因子[J]. 生态学杂志, 2020, 39(10): 3350-3362. |
[3] | Cho, A., Cheong, D., Kim, J.C., Yang, D., Lee, J., Kashima, K., et al. (2018) Holocene Climate and Environmental Changes Inferred from Sediment Characteristics and Diatom Assemblages in a Core from Hwajinpo Lagoon, Korea. Journal of Paleolimnology, 60, 553-570. https://doi.org/10.1007/s10933-018-0040-1 |
[4] | Dulias, K., Stoof-Leichsenring, K.R., Pestryakova, L.A., et al. (2017) Sedimentary DNA versus Morphology in the Analysis of Diatom-Environment Relationships. Journal of Paleolimnology, 57, 51-66. https://doi.org/10.1007/s10933-016-9926-y |
[5] | Tilman, D., Isbell, F. and Cowles, J.M. (2014) Biodiversity and Ecosystem Functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493. https://doi.org/10.1146/annurev-ecolsys-120213-091917 |
[6] | Blanco, S., Cejudo-Figueiras, C., Tudesque, L., Bécares, E., Hoffmann, L. and Ector, L. (2012) Are Diatom Diversity Indices Reliable Monitoring Metrics? Hydrobiologia, 695, 199-206. https://doi.org/10.1007/s10750-012-1113-1 |
[7] | Dornelas, M., Gotelli, N.J., McGill, B. and Magurran, A.E. (2014) Overlooked Local Biodiversity Loss—Response. Science, 344, 1098-1099. https://doi.org/10.1126/science.344.6188.1098-b |
[8] | May, R.M. (2006) Network Structure and the Biology of Populations. Trends in Ecology & Evolution, 21, 394-399. https://doi.org/10.1016/j.tree.2006.03.013 |
[9] | Feng, W. and Takemoto, K. (2014) Heterogeneity in Ecological Mutualistic Networks Dominantly Determines Community Stability. Scientific Reports, 4, Article No. 5912. https://doi.org/10.1038/srep05912 |
[10] | Wang, R., Dearing, J.A., Doncaster, C.P., Yang, X., Zhang, E., Langdon, P.G., et al. (2019) Network Parameters Quantify Loss of Assemblage Structure in Human‐Impacted Lake Ecosystems. Global Change Biology, 25, 3871-3882. https://doi.org/10.1111/gcb.14776 |
[11] | Smith, V. (2016) Effects of Eutrophication on Maximum Algal Biomass in Lake and River Ecosystems. Inland Waters, 6, 147-154. https://doi.org/10.5268/iw-6.2.937 |
[12] | Smith, V.H. and Schindler, D.W. (2009) Eutrophication Science: Where Do We Go from Here? Trends in Ecology & Evolution, 24, 201-207. https://doi.org/10.1016/j.tree.2008.11.009 |
[13] | Xiao, W., Liu, X., Irwin, A.J., Laws, E.A., Wang, L., Chen, B., et al. (2018) Warming and Eutrophication Combine to Restructure Diatoms and Dinoflagellates. Water Research, 128, 206-216. https://doi.org/10.1016/j.watres.2017.10.051 |
[14] | Lotter, A.F. (2001) The Palaeolimnology of Soppensee (Central Switzerland), as Evidenced by Diatom, Pollen, and Fossil-Pigment Analyses. Journal of Paleolimnology, 25, 65-79. https://doi.org/10.1023/A:1008140122230 |
[15] | 康文刚, 陈光杰, 王教元, 等. 大理西湖流域开发历史与硅藻群落变化的模式识别[J]. 应用生态学报, 2017, 28(3): 1001-1012. |
[16] | 邓颖, 陈光杰, 刘术, 等. 基于沉积物与文献记录的茈碧湖水文波动与近现代生态环境变化[J]. 第四纪研究, 2018, 38(4): 912-925. |
[17] | Hötzel, G. and Croome, R. (1996) Population Dynamics of Aulacoseira granulata (EHR.) SIMONSON (Bacillariophyceae, Centrales), the Dominant Alga in the Murray River, Australia. Archiv für Hydrobiologie, 136, 191-215. https://doi.org/10.1127/archiv-hydrobiol/136/1996/191 |
[18] | 丁腾达, 倪婉敏, 张建英. 硅藻重金属污染生态学研究进展[J]. 应用生态学报, 2012, 23(3): 857-866. |
[19] | Falasco, E., Bona, F., Ginepro, M., Hlúbiková, D., Hoffmann, L. and Ector, L. (2009) Morphological Abnormalities of Diatom Silica Walls in Relation to Heavy Metal Contamination and Artificial Growth Conditions. Water SA, 35, 595-606. https://doi.org/10.4314/wsa.v35i5.49185 |
[20] | Hussain, M.M., Wang, J., Bibi, I., Shahid, M., Niazi, N.K., Iqbal, J., et al. (2021) Arsenic Speciation and Biotransformation Pathways in the Aquatic Ecosystem: The Significance of Algae. Journal of Hazardous Materials, 403, Article 124027. https://doi.org/10.1016/j.jhazmat.2020.124027 |
[21] | Duong, T.T., Morin, S., Herlory, O., Feurtet-Mazel, A., Coste, M. and Boudou, A. (2008) Seasonal Effects of Cadmium Accumulation in Periphytic Diatom Communities of Freshwater Biofilms. Aquatic Toxicology, 90, 19-28. https://doi.org/10.1016/j.aquatox.2008.07.012 |
[22] | 刘恩峰, 沈吉, 杨丽原, 等. 南四湖及主要入湖河流表层沉积物重金属形态组成及污染研究[J]. 环境科学, 2007, 28(6): 1377-1383. |
[23] | 陈云增, 杨浩, 张振克, 等. 滇池沉积物金属污染及环境质量评价[J]. 湖泊科学, 2008, 20(4): 492-499. |
[24] | Sarthou, G., Timmermans, K.R., Blain, S. and Tréguer, P. (2005) Growth Physiology and Fate of Diatoms in the Ocean: A Review. Journal of Sea Research, 53, 25-42. https://doi.org/10.1016/j.seares.2004.01.007 |
[25] | Montagnes, D.J.S. and Franklin, M. (2001) Effect of Temperature on Diatom Volume, Growth Rate, and Carbon and Nitrogen Content: Reconsidering Some Paradigms. Limnology and Oceanography, 46, 2008-2018. https://doi.org/10.4319/lo.2001.46.8.2008 |
[26] | 栾卓, 范亚文, 门晓宇. 松花江哈尔滨段水域硅藻植物群落及其水质的初步评价[J]. 湖泊科学, 2015, 22(1): 86-92. |
[27] | Fan, J., Li, F., Hu, S., Gao, K. and Xu, J. (2023) Larger Diatoms Are More Sensitive to Temperature Changes and Prone to Succumb to Warming Stress. Limnology and Oceanography, 68, 2512-2528. https://doi.org/10.1002/lno.12438 |
[28] | Battarbee, R.W. (2000) Palaeolimnological Approaches to Climate Change, with Special Regard to the Biological Record. Quaternary Science Reviews, 19, 107-124. https://doi.org/10.1016/s0277-3791(99)00057-8 |
[29] | Gerten, D. and Adrian, R. (2002) Species‐Specific Changes in the Phenology and Peak Abundance of Freshwater Copepods in Response to Warm Summers. Freshwater Biology, 47, 2163-2173. https://doi.org/10.1046/j.1365-2427.2002.00970.x |
[30] | Smayda, T.J. (1971) Normal and Accelerated Sinking of Phytoplankton in the Sea. Marine Geology, 11, 105-122. https://doi.org/10.1016/0025-3227(71)90070-3 |
[31] | Agbeti, M.D., Kingston, J.C., Smol, J.P. and Watters, C. (1997) Comparison of Phytoplankton Succession in Two Lakes of Different Mixing Regimes Fig: 12 Tab: 4. Fundamental and Applied Limnology, 140, 37-69. https://doi.org/10.1127/archiv-hydrobiol/140/1997/37 |
[32] | Rühland, K.M., Paterson, A.M. and Smol, J.P. (2015) Lake Diatom Responses to Warming: Reviewing the Evidence. Journal of Paleolimnology, 54, 1-35. https://doi.org/10.1007/s10933-015-9837-3 |
[33] | Rühland, K., Paterson, A.M. and Smol, J.P. (2008) Hemispheric‐Scale Patterns of Climate‐Related Shifts in Planktonic Diatoms from North American and European Lakes. Global Change Biology, 14, 2740-2754. https://doi.org/10.1111/j.1365-2486.2008.01670.x |
[34] | 王超, 赖子尼, 李跃飞, 等. 西江颗粒直链藻种群生态特征[J]. 生态学报, 2012, 32(15): 4793-4802. |
[35] | Brugam, R.B. (1983) The Relationship between Fossil Diatom Assemblages and Limnological Conditions. Hydrobiologia, 98, 223-235. https://doi.org/10.1007/bf00021023 |
[36] | Chen, B. (2015) Patterns of Thermal Limits of Phytoplankton. Journal of Plankton Research, 37, 285-292. https://doi.org/10.1093/plankt/fbv009 |
[37] | Eilers, P.H.C. and Peeters, J.C.H. (1988) A Model for the Relationship between Light Intensity and the Rate of Photosynthesis in Phytoplankton. Ecological Modelling, 42, 199-215. https://doi.org/10.1016/0304-3800(88)90057-9 |
[38] | Bennion, H. (1995) Surface-Sediment Diatom Assemblages in Shallow, Artificial, Enriched Ponds, and Implications for Reconstructing Trophic Status. Diatom Research, 10, 1-19. https://doi.org/10.1080/0269249x.1995.9705326 |
[39] | 廖梦娜, 李艳玲. 东北镜泊湖硅藻对近现代气候变化和人类干扰的响应过程[J]. 生态学报, 2018, 38(4): 1458-1469. |
[40] | Hurlbert, S.H. (1971) The Nonconcept of Species Diversity: A Critique and Alternative Parameters. Ecology, 52, 577-586. https://doi.org/10.2307/1934145 |
[41] | 代存芳, 易映彤, 刘妍, 等. 扎龙湿地硅藻植物群落季节变化及其对环境的响应[J]. 生态学报, 2017, 37(8): 2818-2827. |
[42] | Wang, R., Hu, Z., Wang, Q., Xu, M., Zheng, W., Zhang, K., et al. (2020) Discrepancy in the Responses of Diatom Diversity to Indirect and Direct Human Activities in Lakes of the Southeastern Tibetan Plateau, China. Anthropocene, 30, Article 100243. https://doi.org/10.1016/j.ancene.2020.100243 |
[43] | Zheng, W., Wang, R., Zhang, E., Yang, H. and Xu, M. (2021) Declining Chironomid Diversity in Relation to Human Influences in Southwest China. Anthropocene, 36, Article 100308. https://doi.org/10.1016/j.ancene.2021.100308 |
[44] | Rosset, V., Angélibert, S., Arthaud, F., Bornette, G., Robin, J., Wezel, A., et al. (2014) Is Eutrophication Really a Major Impairment for Small Waterbody Biodiversity? Journal of Applied Ecology, 51, 415-425. https://doi.org/10.1111/1365-2664.12201 |
[45] | Wang, R., Xu, M., Yang, H., Yang, X., Zhang, K., Zhang, E., et al. (2019) Ordered Diatom Species Loss along a Total Phosphorus Gradient in Eutrophic Lakes of the Lower Yangtze River Basin, China. Science of The Total Environment, 650, 1688-1695. https://doi.org/10.1016/j.scitotenv.2018.09.328 |
[46] | Sayer, C., Roberts, N., Sadler, J., David, C. and Wade, P.M. (1999) Biodiversity Changes in a Shallow Lake Ecosystem: A Multi‐Proxy Palaeolimnological Analysis. Journal of Biogeography, 26, 97-114. https://doi.org/10.1111/j.1365-2699.1999.00298.x |
[47] | Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., et al. (2010) Navigating the Multiple Meanings of β Diversity: A Roadmap for the Practicing Ecologist. Ecology Letters, 14, 19-28. https://doi.org/10.1111/j.1461-0248.2010.01552.x |
[48] | Chase, J.M., Kraft, N.J.B., Smith, K.G., Vellend, M. and Inouye, B.D. (2011) Using Null Models to Disentangle Variation in Community Dissimilarity from Variation in Α-Diversity. Ecosphere, 2, art24. https://doi.org/10.1890/es10-00117.1 |
[49] | Socolar, J.B., Gilroy, J.J., Kunin, W.E. and Edwards, D.P. (2016) How Should Beta-Diversity Inform Biodiversity Conservation? Trends in Ecology & Evolution, 31, 67-80. https://doi.org/10.1016/j.tree.2015.11.005 |
[50] | Salgado, J., Sayer, C.D., Brooks, S.J., Davidson, T.A., Goldsmith, B., Patmore, I.R., et al. (2018) Eutrophication Homogenizes Shallow Lake Macrophyte Assemblages over Space and Time. Ecosphere, 9, e02406. https://doi.org/10.1002/ecs2.2406 |
[51] | Xu, M., Wang, R., Dong, X., Zhang, Q. and Yang, X. (2022) Intensive Human Impacts Drive the Declines in Heterogeneity of Diatom Communities in Shallow Lakes of East China. Ecological Indicators, 140, Article 108994. https://doi.org/10.1016/j.ecolind.2022.108994 |
[52] | Korhonen, J.J., Soininen, J. and Hillebrand, H. (2010) A Quantitative Analysis of Temporal Turnover in Aquatic Species Assemblages across Ecosystems. Ecology, 91, 508-517. https://doi.org/10.1890/09-0392.1 |
[53] | McGill, B.J., Dornelas, M., Gotelli, N.J. and Magurran, A.E. (2015) Fifteen Forms of Biodiversity Trend in the Anthropocene. Trends in Ecology & Evolution, 30, 104-113. https://doi.org/10.1016/j.tree.2014.11.006 |