全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

酸性矿山废水的环境影响及其治理技术:研究进展与展望
Environmental Impacts of Acid Mine Drainage and Its Remediation Technologies: Research Progress and Prospects

DOI: 10.12677/ag.2025.153032, PP. 320-328

Keywords: 酸性矿山废水,环境影响,治理技术,回收利用
Acid Mine Drainage (AMD)
, Environmental Impacts, Remediation Technologies, Recycling

Full-Text   Cite this paper   Add to My Lib

Abstract:

酸性矿山废水是矿区及周边地区面临的重大环境问题。酸性矿山废水是含硫矿石在采矿作业中产生的,含硫矿石或废物暴露于水、氧气中,在微生物存在下,经一系列生物化学反应作用而形成的废水。其中大量硫化物和重金属离子的释放造成水体酸化,直接破坏水环境平衡,引起水生生态系统的剧烈变动,加剧重金属迁移,对土壤、地下水、农业生产构成威胁,同时也给人类健康带来潜在风险。针对这一问题,当前治理措施主要包括吸附处理、化学中和、微生物修复以及人工湿地等多种技术。本文梳理分析酸性矿山废水的生成机理、环境影响与治理技术,为酸性矿山废水治理和可持续发展提供理论支持和辅助作用,未来研究应聚焦于治理技术的可操作性、无害化、投入产出比,以期实现技术的规模应用和长期效用。
Acid mine drainage (AMD) is a major environmental issue affecting mining areas and their surrounding regions. It is generated during mining operations when sulfur-bearing ores or waste materials are exposed to water and oxygen, undergoing a series of biochemical reactions in the presence of microorganisms. The release of large amounts of sulfides and heavy metal ions leads to water acidification, directly disrupting aquatic environmental balance, causing severe disturbances to aquatic ecosystems, and accelerating heavy metal migration. This poses threats to soil, groundwater, and agricultural production while also presenting potential health risks to humans. To address this issue, current remediation measures mainly include adsorption treatment, chemical neutralization, microbial remediation, and constructed wetlands, among other technologies. This paper systematically analyzes the formation mechanisms, environmental impacts, and remediation technologies of AMD, providing theoretical support and guidance for AMD treatment and sustainable development. Future research should focus on the feasibility, environmental safety, and cost-effectiveness of treatment technologies to achieve large-scale application and long-term effectiveness.

References

[1]  Rodríguez-Galán, M., Baena-Moreno, F.M., Vázquez, S., Arroyo-Torralvo, F., Vilches, L.F. and Zhang, Z. (2019) Remediation of Acid Mine Drainage. Environmental Chemistry Letters, 17, 1529-1538.
https://doi.org/10.1007/s10311-019-00894-w
[2]  Kefeni, K.K., Msagati, T.A.M. and Mamba, B.B. (2017) Acid Mine Drainage: Prevention, Treatment Options, and Resource Recovery: A Review. Journal of Cleaner Production, 151, 475-493.
https://doi.org/10.1016/j.jclepro.2017.03.082
[3]  Shabalala, A.N., Ekolu, S.O., Diop, S. and Solomon, F. (2017) Pervious Concrete Reactive Barrier for Removal of Heavy Metals from Acid Mine Drainage—Column Study. Journal of Hazardous Materials, 323, 641-653.
https://doi.org/10.1016/j.jhazmat.2016.10.027
[4]  Tomiyama, S., Igarashi, T., Tabelin, C.B., Tangviroon, P. and Ii, H. (2020) Modeling of the Groundwater Flow System in Excavated Areas of an Abandoned Mine. Journal of Contaminant Hydrology, 230, Article 103617.
https://doi.org/10.1016/j.jconhyd.2020.103617
[5]  Anawar, H.M. (2015) Sustainable Rehabilitation of Mining Waste and Acid Mine Drainage Using Geochemistry, Mine Type, Mineralogy, Texture, Ore Extraction and Climate Knowledge. Journal of Environmental Management, 158, 111-121.
https://doi.org/10.1016/j.jenvman.2015.04.045
[6]  Han, Y., Youm, S., Oh, C., Cho, Y. and Ahn, J.S. (2017) Geochemical and Eco-Toxicological Characteristics of Stream Water and Its Sediments Affected by Acid Mine Drainage. CATENA, 148, 52-59.
https://doi.org/10.1016/j.catena.2015.11.015
[7]  Park, I., Tabelin, C.B., Jeon, S., Li, X., Seno, K., Ito, M., et al. (2019) A Review of Recent Strategies for Acid Mine Drainage Prevention and Mine Tailings Recycling. Chemosphere, 219, 588-606.
https://doi.org/10.1016/j.chemosphere.2018.11.053
[8]  RoyChowdhury, A., Sarkar, D. and Datta, R. (2015) Remediation of Acid Mine Drainage-Impacted Water. Current Pollution Reports, 1, 131-141.
https://doi.org/10.1007/s40726-015-0011-3
[9]  Zhang, L., Ahmari, S. and Zhang, J. (2011) Synthesis and Characterization of Fly Ash Modified Mine Tailings-Based Geopolymers. Construction and Building Materials, 25, 3773-3781.
https://doi.org/10.1016/j.conbuildmat.2011.04.005
[10]  Hajihashemi, S., Rajabpoor, S. and Schat, H. (2023) Acid Mine Drainage (AMD) Endangers Pomegranate Trees Nearby a Copper Mine. Science of The Total Environment, 889, Article 164269.
https://doi.org/10.1016/j.scitotenv.2023.164269
[11]  李萌晓, 赵林, 陈达颖, 等. 硫酸盐还原菌处理酸性矿山废水的研究进展[J]. 应用化工, 2023, 52(12): 3439-3443, 3448.
[12]  Viadero, R.C., Zhang, S., Hu, X. and Wei, X. (2020) Mine Drainage: Remediation Technology and Resource Recovery. Water Environment Research, 92, 1533-1540.
https://doi.org/10.1002/wer.1401
[13]  Daraz, U., Li, Y., Ahmad, I., Iqbal, R. and Ditta, A. (2023) Remediation Technologies for Acid Mine Drainage: Recent Trends and Future Perspectives. Chemosphere, 311, Article 137089.
https://doi.org/10.1016/j.chemosphere.2022.137089
[14]  杨磊, 曹端宁, 王叶雷, 等. 转炉钢渣处理酸性矿山废水的研究进展[J]. 工业水处理, 2022, 42(3): 41-46.
[15]  Demers, I., Mbonimpa, M., Benzaazoua, M., Bouda, M., Awoh, S., Lortie, S., et al. (2017) Use of Acid Mine Drainage Treatment Sludge by Combination with a Natural Soil as an Oxygen Barrier Cover for Mine Waste Reclamation: Laboratory Column Tests and Intermediate Scale Field Tests. Minerals Engineering, 107, 43-52.
https://doi.org/10.1016/j.mineng.2016.11.017
[16]  Zhang, M. and Wang, H. (2017) Utilization of Bactericide Technology for Pollution Control of Acidic Coal Mine Waste. Proceedings of the 2017 6th International Conference on Energy, Environment and Sustainable Development (ICEESD 2017), Zhuhai, 11-12 March 2017, 667-670.
https://doi.org/10.2991/iceesd-17.2017.120
[17]  Alakangas, L., Andersson, E. and Mueller, S. (2013) Neutralization/Prevention of Acid Rock Drainage Using Mixtures of Alkaline By-Products and Sulfidic Mine Wastes. Environmental Science and Pollution Research, 20, 7907-7916.
https://doi.org/10.1007/s11356-013-1838-z
[18]  Tu, Z., Wu, Q., He, H., Zhou, S., Liu, J., He, H., et al. (2022) Reduction of Acid Mine Drainage by Passivation of Pyrite Surfaces: A Review. Science of The Total Environment, 832, Article 155116.
https://doi.org/10.1016/j.scitotenv.2022.155116
[19]  Wang, M., Yue, Z., Deng, R., She, Z., Zhang, L., Yang, F., et al. (2025) Molecular Disruptions in Microalgae Caused by Acidithiobacillus ferrooxidans: Photosynthesis, Oxidative Stress, and Energy Metabolism in Acid Mine Drainage. Water Research, 272, Article 122974.
https://doi.org/10.1016/j.watres.2024.122974
[20]  Sierra, C., Álvarez Saiz, J.R. and Gallego, J.L.R. (2013) Nanofiltration of Acid Mine Drainage in an Abandoned Mercury Mining Area. Water, Air, & Soil Pollution, 224, Article No. 1734.
https://doi.org/10.1007/s11270-013-1734-7
[21]  Aguiar, A.O., Andrade, L.H., Ricci, B.C., Pires, W.L., Miranda, G.A. and Amaral, M.C.S. (2016) Gold Acid Mine Drainage Treatment by Membrane Separation Processes: An Evaluation of the Main Operational Conditions. Separation and Purification Technology, 170, 360-369.
https://doi.org/10.1016/j.seppur.2016.07.003
[22]  Roesel, L.K. and Zak, D.H. (2022) Treating Acid Mine Drainage with Decomposed Organic Soil: Implications for Peatland Rewetting. Journal of Environmental Management, 311, Article 114808.
https://doi.org/10.1016/j.jenvman.2022.114808
[23]  Masindi, V., Shabalala, A. and Foteinis, S. (2022) Passive Co-Treatment of Phosphorus-Depleted Municipal Wastewater with Acid Mine Drainage: Towards Sustainable Wastewater Management Systems. Journal of Environmental Management, 324, Article 116399.
https://doi.org/10.1016/j.jenvman.2022.116399
[24]  Lee, Y., Ren, Y., Cui, M., Zhou, Y., Kwon, O., Ko, J., et al. (2022) Arsenic Adsorption Study in Acid Mine Drainage Using Fixed Bed Column by Novel Beaded Adsorbent. Chemosphere, 291, Article 132894.
https://doi.org/10.1016/j.chemosphere.2021.132894
[25]  Aguilar-Garrido, A., Paniagua-López, M., Sierra-Aragón, M., Martínez Garzón, F.J. and Martín-Peinado, F.J. (2023) Remediation Potential of Mining, Agro-Industrial, and Urban Wastes against Acid Mine Drainage. Scientific Reports, 13, Article No. 12120.
https://doi.org/10.1038/s41598-023-39266-4
[26]  Carrillo-González, R., Gatica García, B.G., González-Chávez, M.D.C.A. and Solís Domínguez, F.A. (2021) Trace Elements Adsorption from Solutions and Acid Mine Drainage Using Agricultural By-Products. Soil and Sediment Contamination, 31, 348-366.
https://doi.org/10.1080/15320383.2021.1942430
[27]  Shabalala, A. and Masindi, V. (2022) Insights into Mechanisms Governing the Passive Removal of Inorganic Contaminants from Acid Mine Drainage Using Permeable Reactive Barrier. Journal of Environmental Management, 321, Article 115866.
https://doi.org/10.1016/j.jenvman.2022.115866
[28]  Liu, J., Cheng, H., Zhao, F., Dong, F. and Frost, R.L. (2013) Effect of Reactive Bed Mineralogy on Arsenic Retention and Permeability of Synthetic Arsenic-Containing Acid Mine Drainage. Journal of Colloid and Interface Science, 394, 530-538.
https://doi.org/10.1016/j.jcis.2012.12.014
[29]  Wenbo, L., Qiyan, F., Haoqian, L., Di, C. and Xiangdong, L. (2021) Passive Treatment Test of Acid Mine Drainage from an Abandoned Coal Mine in Kaili Guizhou, China. Water Science and Technology, 84, 1981-1996.
https://doi.org/10.2166/wst.2021.405
[30]  贾郁菲, 陈宏坪, 张文影, 等. 甲壳生物质修复废弃煤矿酸性矿坑水研究进展[J]. 环境保护科学, 2024, 50(2): 1-7.
[31]  Chang, J., Deng, S., Li, X., Li, Y., Chen, J. and Duan, C. (2022) Effective Treatment of Acid Mine Drainage by Constructed Wetland Column: Coupling Walnut Shell and Its Biochar Product as the Substrates. Journal of Water Process Engineering, 49, Article 103116.
https://doi.org/10.1016/j.jwpe.2022.103116
[32]  Singh, S. and Chakraborty, S. (2020) Performance of Organic Substrate Amended Constructed Wetland Treating Acid Mine Drainage (AMD) of North-Eastern India. Journal of Hazardous Materials, 397, Article 122719.
https://doi.org/10.1016/j.jhazmat.2020.122719
[33]  Nguegang, B., Masindi, V., Msagati Makudali, T.A. and Tekere, M. (2022) Effective Treatment of Acid Mine Drainage Using a Combination of MgO-Nanoparticles and a Series of Constructed Wetlands Planted with Vetiveria zizanioides: A Hybrid and Stepwise Approach. Journal of Environmental Management, 310, Article 114751.
https://doi.org/10.1016/j.jenvman.2022.114751
[34]  Velenturf, A.P.M. and Purnell, P. (2021) Principles for a Sustainable Circular Economy. Sustainable Production and Consumption, 27, 1437-1457.
https://doi.org/10.1016/j.spc.2021.02.018
[35]  许昊洋, 宁寻安, 陈涛, 等. 酸性矿山废水中多种有价金属的高效分离[J]. 环境保护科学, 2024, 50(3): 119-127.
[36]  谢义曦, 吴攀, 李学先, 等. 分级化学沉淀法从酸性矿山废水中回收稀土元素试验研究[J]. 中国稀土学报, 2024, 42(2): 360-370.
[37]  Bai, S., Bi, Y., Li, J., Yu, P., Ding, Z., Lv, C., et al. (2021) Innovative Utilization of Acid Mine Drainage (AMD): A Promising Activator for Pyrite Flotation Once Depressed in a High Alkali Solution (HAS)—Gearing Towards a Cleaner Production Concept of Copper Sulfide Ore. Minerals Engineering, 170, Article 106997.
https://doi.org/10.1016/j.mineng.2021.106997

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133