|
长链非编码RNA在胃癌血管生成中的研究进展
|
Abstract:
胃癌是全球最常见的恶性肿瘤之一,也是导致癌症相关死亡的主要原因之一。血管生成是肿瘤生长和转移的关键过程,异常的血管生成在胃癌的发生和发展中起着重要作用。近年来,长链非编码RNA作为一类不编码蛋白质但具有重要功能的分子,在肿瘤血管生成中发挥了关键作用。长链非编码RNA通过调控血管内皮生长因子信号通路、血管生成拟态及内皮细胞的活性等途径,促进胃癌血管生成,推动肿瘤进展。本文主要综述了长链非编码RNA在胃癌血管生成中的研究进展,并探讨了其通过不同机制影响胃癌血管生成的分子机制。
Gastric cancer is one of the most prevalent malignant tumors globally and a leading cause of cancer-related mortality. Angiogenesis plays a pivotal role in tumor growth and metastasis, with aberrant vascular formation being a key factor in the onset and progression of gastric cancer. In recent years, long non-coding RNAs (lncRNAs), which do not encode proteins but perform critical regulatory functions, have emerged as significant contributors to tumor angiogenesis. LncRNAs modulate angiogenesis in gastric cancer by regulating the Vascular Endothelial Growth Factor (VEGF) signaling pathway, vascular mimicry, and endothelial cell activity, thereby promoting tumor vascularization and progression. This review summarizes the research advances in lncRNAs in gastric cancer angiogenesis and explores the molecular mechanisms through which they influence gastric cancer through different mechanisms.
[1] | Thrift, A.P. and El-Serag, H.B. (2020) Burden of Gastric Cancer. Clinical Gastroenterology and Hepatology, 18, 534-542. https://doi.org/10.1016/j.cgh.2019.07.045 |
[2] | Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834 |
[3] | Arnold, M., Abnet, C.C., Neale, R.E., Vignat, J., Giovannucci, E.L., McGlynn, K.A., et al. (2020) Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology, 159, 335-349.e15. https://doi.org/10.1053/j.gastro.2020.02.068 |
[4] | Yu, P., Wang, Y., Yuan, D., Sun, Y., Qin, S. and Li, T. (2023) Vascular Normalization: Reshaping the Tumor Microenvironment and Augmenting Antitumor Immunity for Ovarian Cancer. Frontiers in Immunology, 14, Article 1276694. https://doi.org/10.3389/fimmu.2023.1276694 |
[5] | Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013 |
[6] | Sherwood, L.M., Parris, E.E. and Folkman, J. (1971) Tumor Angiogenesis: Therapeutic Implications. New England Journal of Medicine, 285, 1182-1186. https://doi.org/10.1056/nejm197111182852108 |
[7] | Lugano, R., Ramachandran, M. and Dimberg, A. (2019) Tumor Angiogenesis: Causes, Consequences, Challenges and Opportunities. Cellular and Molecular Life Sciences, 77, 1745-1770. https://doi.org/10.1007/s00018-019-03351-7 |
[8] | Teng, F., Zhang, J., Chang, Q., Wu, X., Tang, W., Wang, J., et al. (2020) Correction to: LncRNA MYLK-AS1 Facilitates Tumor Progression and Angiogenesis by Targeting miR-424-5p/E2F7 Axis and Activating VEGFR-2 Signaling Pathway in Hepatocellular Carcinoma. Journal of Experimental & Clinical Cancer Research, 39, Article No. 277. https://doi.org/10.1186/s13046-020-01780-y |
[9] | Zhang, S., Xia, Y., Chen, W., Dong, H., Cui, B., Liu, C., et al. (2024) Regulation and Therapeutic Application of Long Non-Coding RNA in Tumor Angiogenesis. Technology in Cancer Research & Treatment, 23, 1-16. https://doi.org/10.1177/15330338241273239 |
[10] | Deng, F., Zhou, R., Lin, C., Yang, S., Wang, H., Li, W., et al. (2019) Tumor-Secreted Dickkopf2 Accelerates Aerobic Glycolysis and Promotes Angiogenesis in Colorectal Cancer. Theranostics, 9, 1001-1014. https://doi.org/10.7150/thno.30056 |
[11] | Dakowicz, D., Zajkowska, M. and Mroczko, B. (2022) Relationship between VEGF Family Members, Their Receptors and Cell Death in the Neoplastic Transformation of Colorectal Cancer. International Journal of Molecular Sciences, 23, Article 3375. https://doi.org/10.3390/ijms23063375 |
[12] | Zhao, J., Du, P., Cui, P., Qin, Y., Hu, C., Wu, J., et al. (2018) LncRNA PVT1 Promotes Angiogenesis via Activating the STAT3/VEGFA Axis in Gastric Cancer. Oncogene, 37, 4094-4109. https://doi.org/10.1038/s41388-018-0250-z |
[13] | Jin, Y., Cao, J., Hu, X. and Cheng, H. (2021) Long Noncoding RNA TUG1 Upregulates VEGFA to Enhance Malignant Behaviors in Stomach Adenocarcinoma by Sponging miR‐29c‐3p. Journal of Clinical Laboratory Analysis, 35, e24106. https://doi.org/10.1002/jcla.24106 |
[14] | Zhang, J., Pang, X., Lei, L., Zhang, J., Zhang, X., Chen, Z., et al. (2022) LncRNA CRART16/miR-122-5p/FOS Axis Promotes Angiogenesis of Gastric Cancer by Upregulating VEGFD Expression. Aging, 14, 4137-4157. https://doi.org/10.18632/aging.204078 |
[15] | Teng, F., Zhang, J., Chen, Y., Shen, X., Su, C., Guo, Y., et al. (2021) LncRNA NKX2‐1‐AS1 Promotes Tumor Progression and Angiogenesis via Upregulation of SERPINE1 Expression and Activation of the VEGFR‐2 Signaling Pathway in Gastric Cancer. Molecular Oncology, 15, 1234-1255. https://doi.org/10.1002/1878-0261.12911 |
[16] | Claesson‐Welsh, L. and Welsh, M. (2013) VEGFA and Tumour Angiogenesis. Journal of Internal Medicine, 273, 114-127. https://doi.org/10.1111/joim.12019 |
[17] | Yonemura, Y., Endo, Y., Tabata, K., Kawamura, T., Yun, H., Bandou, E., et al. (2005) Role of VEGF-C and VEGF-D in Lymphangiogenesis in Gastric Cancer. International Journal of Clinical Oncology, 10, 318-327. https://doi.org/10.1007/s10147-005-0508-7 |
[18] | Wang, L., Cho, K.B., Li, Y., Tao, G., Xie, Z. and Guo, B. (2019) Long Noncoding RNA (LncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. International Journal of Molecular Sciences, 20, Article 5758. https://doi.org/10.3390/ijms20225758 |
[19] | Wu, X., Sui, Z., Zhang, H., Wang, Y. and Yu, Z. (2020) Integrated Analysis of LncRNA-Mediated Cerna Network in Lung Adenocarcinoma. Frontiers in Oncology, 10, Article 554759. https://doi.org/10.3389/fonc.2020.554759 |
[20] | Liu, H., Ma, R., Lv, B., Zhang, H., Shi, D., Guo, X., et al. (2020) LncRNA-HNF1A-AS1 Functions as a Competing Endogenous RNA to Activate PI3K/AKT Signalling Pathway by Sponging miR-30b-3p in Gastric Cancer. British Journal of Cancer, 122, 1825-1836. https://doi.org/10.1038/s41416-020-0836-4 |
[21] | Xu, Y., Li, Y., Qiu, Y., Sun, F., Zhu, G., Sun, J., et al. (2021) LncRNA NEAT1 Promotes Gastric Cancer Progression through miR-17-5p/TGFβR2Axis Up-Regulated Angiogenesis. Frontiers in Cell and Developmental Biology, 9, Article 705697. https://doi.org/10.3389/fcell.2021.705697 |
[22] | Zhu, Y., You, J., Wei, W., Gu, J., Xu, C. and Gu, X. (2021) Downregulated LncRNA RCPCD Promotes Differentiation of Embryonic Stem Cells into Cardiac Pacemaker-Like Cells by Suppressing HCN4 Promoter Methylation. Cell Death & Disease, 12, Article No. 667. https://doi.org/10.1038/s41419-021-03949-5 |
[23] | 林秀, 孙赛, 毛越苹. 长链非编码RNA在硬皮病表观遗传学发病机制中的研究进展[J]. 广东医学, 2019, 40(S1): 227-229. |
[24] | Guo, X., Wang, Y., Zha, L., Li, H. and Qian, K. (2023) DNA Methylation-Related LncRNAs Predict Prognosis and Immunotherapy Response in Gastric Cancer. Journal of Cancer Research and Clinical Oncology, 149, 14745-14760. https://doi.org/10.1007/s00432-023-05234-8 |
[25] | Elimam, H., Abdel Mageed, S.S., Hatawsh, A., Moussa, R., Radwan, A.F., Elfar, N., et al. (2024) Unraveling the Influence of LncRNA in Gastric Cancer Pathogenesis: A Comprehensive Review Focus on Signaling Pathways Interplay. Medical Oncology, 41, Article No. 218. https://doi.org/10.1007/s12032-024-02455-w |
[26] | Dou, R., Han, L., Yang, C., Fang, Y., Zheng, J., Liang, C., et al. (2023) Upregulation of LINC00501 by H3K27 Acetylation Facilitates Gastric Cancer Metastasis through Activating Epithelial‐Mesenchymal Transition and Angiogenesis. Clinical and Translational Medicine, 13, e1432. https://doi.org/10.1002/ctm2.1432 |
[27] | Wang, Y., Jiang, R., Wang, Q., Li, Y., Sun, Z. and Zhao, H. (2021) Silencing LINC01021 Inhibits Gastric Cancer through Upregulation of KISS1 Expression by Blocking CDK2-Dependent Phosphorylation of CDX2. Molecular Therapy—Nucleic Acids, 24, 832-844. https://doi.org/10.1016/j.omtn.2021.01.025 |
[28] | Maniotis, A.J., Folberg, R., Hess, A., Seftor, E.A., Gardner, L.M.G., Pe’er, J., et al. (1999) Vascular Channel Formation by Human Melanoma Cells in Vivo and in Vitro: Vasculogenic Mimicry. The American Journal of Pathology, 155, 739-752. https://doi.org/10.1016/s0002-9440(10)65173-5 |
[29] | Hao, X.S., Sun, B.C., Zhang, S.W., et al. (2003) Correlation between the Expression of Collgen IV, VEGF and Vasculogenic Mimicry. Chinese Journal of Oncology, 25, 524-526. |
[30] | Chen, Y. and Chen, Z. (2014) Vasculogenic Mimicry: A Novel Target for Glioma Therapy. Chinese Journal of Cancer, 33, 74-79. https://doi.org/10.5732/cjc.012.10292 |
[31] | Wang, J., Xia, W., Huang, Y., Li, H., Tang, Y., Li, Y., et al. (2022) A Vasculogenic Mimicry Prognostic Signature Associated with Immune Signature in Human Gastric Cancer. Frontiers in Immunology, 13, Article 1016612. https://doi.org/10.3389/fimmu.2022.1016612 |
[32] | Lu, Y., Yang, B., Shen, A., Yu, K., Ma, M., Li, Y., et al. (2024) LncRNA UCA1 Promotes Vasculogenic Mimicry by Targeting miR-1-3p in Gastric Cancer. Carcinogenesis, 45, 658-672. https://doi.org/10.1093/carcin/bgae031 |
[33] | Zhao, J., Wu, J., Qin, Y., Zhang, W., Huang, G. and Qin, L. (2020) LncRNA PVT1 Induces Aggressive Vasculogenic Mimicry Formation through Activating the STAT3/Slug Axis and Epithelial-to-Mesenchymal Transition in Gastric Cancer. Cellular Oncology, 43, 863-876. https://doi.org/10.1007/s13402-020-00532-6 |
[34] | Li, Y., Wu, Z., Yuan, J., Sun, L., Lin, L., Huang, N., et al. (2017) Long Non-Coding RNA MALAT1 Promotes Gastric Cancer Tumorigenicity and Metastasis by Regulating Vasculogenic Mimicry and Angiogenesis. Cancer Letters, 395, 31-44. https://doi.org/10.1016/j.canlet.2017.02.035 |