全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

炎症反应在心肌缺血再灌注损伤中的研究进展
Research Progress on Inflammatory Response in Myocardial Ischemia-Reperfusion Injury

DOI: 10.12677/acm.2025.153823, PP. 1944-1952

Keywords: 缺血再灌注损伤,炎症,细胞焦亡,通路
Ischemia-Reperfusion Injury
, Inflammation, Pyroptosis, Pathway

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着医疗技术的不断进步,溶栓和经皮冠状动脉介入等治疗手段显著降低了急性心肌梗死的死亡率。然而,当缺血心肌细胞的血流恢复之后,随之而来的心肌再灌注损伤却可能进一步加重心肌损伤。心肌再灌注损伤的机制复杂多样,主要包括钙超载、炎症反应、氧化应激、内皮功能障碍、免疫反应、线粒体功能障碍、心肌细胞凋亡、自噬和细胞焦亡等。其中,炎症反应在心肌再灌注损伤中扮演着关键角色,抑制炎症反应可以有效减轻心肌再灌注损伤。文章重点介绍炎症在心肌再灌注损伤中的作用机制,为提升心肌再灌注损伤的临床治疗效果和改善患者预后提供新的策略。
With the continuous advancement of medical technology, treatment methods such as thrombolysis and percutaneous coronary intervention have significantly reduced the mortality rate of acute myocardial infarction. However, after the blood flow to ischemic myocardial cells is restored, the subsequent myocardial reperfusion injury may further exacerbate myocardial damage. The mechanisms of myocardial reperfusion injury are complex and diverse, mainly including calcium overload, inflammatory response, oxidative stress, endothelial dysfunction, immune response, mitochondrial dysfunction, myocardial cell apoptosis, autophagy, and pyroptosis. Among them, the inflammatory response plays a crucial role in myocardial reperfusion injury, and inhibiting the inflammatory response can effectively alleviate myocardial reperfusion injury. This article focuses on introducing the mechanism of action of inflammation in myocardial reperfusion injury, aiming to provide new strategies for improving the clinical treatment effect of myocardial reperfusion injury and the prognosis of patients.

References

[1]  Lei, F., Zhang, J., Deng, Y., Wang, X., Tang, J., Tian, J., et al. (2024) Biomimetic Nanoplatform Treats Myocardial Ischemia/Reperfusion Injury by Synergistically Promoting Angiogenesis and Inhibiting Inflammation. Colloids and Surfaces B: Biointerfaces, 243, Article 114159.
https://doi.org/10.1016/j.colsurfb.2024.114159
[2]  Pan, S., Wang, F., Hui, Y., Chen, K., Zhou, L., Gao, W., et al. (2022) Insulin Reduces Pyroptosis-Induced Inflammation by PDHA1 Dephosphorylation-Mediated NLRP3 Activation during Myocardial Ischemia-Reperfusion Injury. Perfusion, 38, 1277-1287.
https://doi.org/10.1177/02676591221099807
[3]  Chen, L., Mao, L., Xue, J., Jian, Y., Deng, Z., Mazhar, M., et al. (2024) Myocardial Ischemia-Reperfusion Injury: The Balance Mechanism between Mitophagy and NLRP3 Inflammasome. Life Sciences, 355, Article 122998.
https://doi.org/10.1016/j.lfs.2024.122998
[4]  Pan, L., Fu, M., Tang, X.L., Ling, Y., Su, Y. and Ge, J. (2024) Kirenol Ameliorates Myocardial Ischemia-Reperfusion Injury by Promoting Mitochondrial Function and Inhibiting Inflammasome Activation. Cardiovascular Drugs and Therapy.
[5]  Welt, F.G.P., Batchelor, W., Spears, J.R., Penna, C., Pagliaro, P., Ibanez, B., et al. (2024) Reperfusion Injury in Patients with Acute Myocardial Infarction. Journal of the American College of Cardiology, 83, 2196-2213.
https://doi.org/10.1016/j.jacc.2024.02.056
[6]  Xu, X., Li, M., Yu, F., Wei, Q., Liu, Y., Tong, J., et al. (2024) Platelet Membrane Nanocarriers Cascade Targeting Delivery System to Improve Myocardial Remodeling Post Myocardial Ischemia-Reperfusion Injury. Advanced Science, 11, Article 2308727.
https://doi.org/10.1002/advs.202308727
[7]  Xiang, Q., Yi, X., Zhu, X., Wei, X. and Jiang, D. (2024) Regulated Cell Death in Myocardial Ischemia-Reperfusion Injury. Trends in Endocrinology & Metabolism, 35, 219-234.
https://doi.org/10.1016/j.tem.2023.10.010
[8]  Bonaventura, A., Montecucco, F. and Dallegri, F. (2016) Cellular Recruitment in Myocardial Ischaemia/Reperfusion Injury. European Journal of Clinical Investigation, 46, 590-601.
https://doi.org/10.1111/eci.12633
[9]  Tan, H., Li, W., Pang, Z., Weng, X., Gao, J., Chen, J., et al. (2024) Genetically Engineered Macrophages Co-Loaded with CD47 Inhibitors Synergistically Reconstruct Efferocytosis and Improve Cardiac Remodeling Post Myocardial Ischemia Reperfusion Injury. Advanced Healthcare Materials, 13, Article 2303267.
https://doi.org/10.1002/adhm.202303267
[10]  Xu, H., Chen, Y., Xie, P., Lei, T., Liu, K., Liu, X., et al. (2024) Remimazolam Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting the NF-κB Pathway of Macrophage Inflammation. European Journal of Pharmacology, 965, Article 176276.
https://doi.org/10.1016/j.ejphar.2023.176276
[11]  Francisco, J. and Del Re, D.P. (2023) Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants, 12, Article 1944.
https://doi.org/10.3390/antiox12111944
[12]  Dong, H., Jia, W., Wang, C., Teng, D., Xu, B., Ding, X., et al. (2024) Key Subdomains of Mesencephalic Astrocyte-Derived Neurotrophic Factor Attenuate Myocardial Ischemia/Reperfusion Injury by JAK1/STAT1/NF-κB Signaling Pathway. Molecular Medicine, 30, Article No. 139.
https://doi.org/10.1186/s10020-024-00916-6
[13]  Uchikawa, T., Matoba, T., Kawahara, T., Baba, I., Katsuki, S., Koga, J., et al. (2022) Dietary 7-Ketocholesterol Exacerbates Myocardial Ischemia-Reperfusion Injury in Mice through Monocyte/Macrophage-Mediated Inflammation. Scientific Reports, 12, Article No. 14902.
https://doi.org/10.1038/s41598-022-19065-z
[14]  Anzai, A., Choi, J.L., He, S., Fenn, A.M., Nairz, M., Rattik, S., et al. (2017) The Infarcted Myocardium Solicits GM-CSF for the Detrimental Oversupply of Inflammatory Leukocytes. Journal of Experimental Medicine, 214, 3293-3310.
https://doi.org/10.1084/jem.20170689
[15]  Nahrendorf, M., Swirski, F.K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J., et al. (2007) The Healing Myocardium Sequentially Mobilizes Two Monocyte Subsets with Divergent and Complementary Functions. The Journal of Experimental Medicine, 204, 3037-3047.
https://doi.org/10.1084/jem.20070885
[16]  Panizzi, P., Swirski, F.K., Figueiredo, J., Waterman, P., Sosnovik, D.E., Aikawa, E., et al. (2010) Impaired Infarct Healing in Atherosclerotic Mice with Ly-6Chi Monocytosis. Journal of the American College of Cardiology, 55, 1629-1638.
https://doi.org/10.1016/j.jacc.2009.08.089
[17]  Peet, C., Ivetic, A., Bromage, D.I. and Shah, A.M. (2019) Cardiac Monocytes and Macrophages after Myocardial Infarction. Cardiovascular Research, 116, 1101-1112.
https://doi.org/10.1093/cvr/cvz336
[18]  Shen, S., Xu, J., Cheng, C., Xiang, X., Hong, B., Zhang, M., et al. (2024) Macrophages Promote the Transition from Myocardial Ischemia Reperfusion Injury to Cardiac Fibrosis in Mice through GMCSF/CCL2/CCR2 and Phenotype Switching. Acta Pharmacologica Sinica, 45, 959-974.
https://doi.org/10.1038/s41401-023-01222-3
[19]  Li, Z., Ding, Y., Peng, Y., Yu, J., Pan, C., Cai, Y., et al. (2022) Effects of IL-38 on Macrophages and Myocardial Ischemic Injury. Frontiers in Immunology, 13, Article 894002.
https://doi.org/10.3389/fimmu.2022.894002
[20]  Pérez, S. and Rius-Pérez, S. (2022) Macrophage Polarization and Reprogramming in Acute Inflammation: A Redox Perspective. Antioxidants, 11, Article 1394.
https://doi.org/10.3390/antiox11071394
[21]  Chung, S., Overstreet, J.M., Li, Y., Wang, Y., Niu, A., Wang, S., et al. (2018) TGF-β Promotes Fibrosis after Severe Acute Kidney Injury by Enhancing Renal Macrophage Infiltration. JCI Insight, 3, e123563.
https://doi.org/10.1172/jci.insight.123563
[22]  Zhang, A., Su, J., Sun, H., Liu, Q., Li, R., Zhang, Y., et al. (2024) Stachyose Ameliorates Myocardial Ischemia-Reperfusion Injury by Inhibiting Cardiomyocyte Ferroptosis and Macrophage Pyroptosis. International Immunopharmacology, 143, Article 113334.
https://doi.org/10.1016/j.intimp.2024.113334
[23]  Humeres, C., Shinde, A.V., Hanna, A., Alex, L., Hernández, S.C., Li, R., et al. (2022) Smad7 Effects on TGF-β and ErbB2 Restrain Myofibroblast Activation and Protect from Postinfarction Heart Failure. Journal of Clinical Investigation, 132, e146926.
https://doi.org/10.1172/jci146926
[24]  Venugopal, H., Hanna, A., Humeres, C. and Frangogiannis, N.G. (2022) Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells, 11, Article 1386.
https://doi.org/10.3390/cells11091386
[25]  Zaidi, Y., Aguilar, E.G., Troncoso, M., Ilatovskaya, D.V. and DeLeon-Pennell, K.Y. (2021) Immune Regulation of Cardiac Fibrosis Post Myocardial Infarction. Cellular Signalling, 77, Article 109837.
https://doi.org/10.1016/j.cellsig.2020.109837
[26]  Troidl, C., Möllmann, H., Nef, H., Masseli, F., Voss, S., Szardien, S., et al. (2009) Classically and Alternatively Activated Macrophages Contribute to Tissue Remodelling after Myocardial Infarction. Journal of Cellular and Molecular Medicine, 13, 3485-3496.
https://doi.org/10.1111/j.1582-4934.2009.00707.x
[27]  Slotabec, L., Seale, B., Wang, H., Wen, C., Filho, F., Rouhi, N., et al. (2024) Platelets at the Intersection of Inflammation and Coagulation in the APC-Mediated Response to Myocardial Ischemia/reperfusion Injury. The FASEB Journal, 38, 1-12.
https://doi.org/10.1096/fj.202401128r
[28]  Sánchez-Hernández, C.D., Torres-Alarcón, L.A., González-Cortés, A. and Peón, A.N. (2020) Ischemia/Reperfusion Injury: Pathophysiology, Current Clinical Management, and Potential Preventive Approaches. Mediators of Inflammation, 2020, 1-13.
https://doi.org/10.1155/2020/8405370
[29]  Cruz-Gregorio, A., Amezcua-Guerra, L.M., Fisher-Bautista, B., Romero-Beltrán, A. and Fonseca-Camarillo, G. (2024) The Protective Role of Interleukin-37 in Cardiovascular Diseases through Ferroptosis Modulation. International Journal of Molecular Sciences, 25, Article 9758.
https://doi.org/10.3390/ijms25189758
[30]  Li, W., Feng, G., Gauthier, J.M., Lokshina, I., Higashikubo, R., Evans, S., et al. (2019) Ferroptotic Cell Death and TLR4/Trif Signaling Initiate Neutrophil Recruitment after Heart Transplantation. Journal of Clinical Investigation, 129, 2293-2304.
https://doi.org/10.1172/jci126428
[31]  Chen, Y., Fang, Z., Yi, X., Wei, X. and Jiang, D. (2023) The Interaction between Ferroptosis and Inflammatory Signaling Pathways. Cell Death & Disease, 14, Article No. 205.
https://doi.org/10.1038/s41419-023-05716-0
[32]  Deng, L., Jiang, L., Wei, N., Zhang, J. and Wu, X. (2022) Anesthetic Sevoflurane Simultaneously Regulates Autophagic Flux and Pyroptotic Cell Death-Associated Cellular Inflammation in the Hypoxic/Re-Oxygenated Cardiomyocytes: Identification of Sevoflurane as Putative Drug for the Treatment of Myocardial Ischemia-Reperfusion Injury. European Journal of Pharmacology, 936, Article 175363.
https://doi.org/10.1016/j.ejphar.2022.175363
[33]  Lu, N., Cheng, W., Liu, D., Liu, G., Cui, C., Feng, C., et al. (2022) NLRP3-Mediated Inflammation in Atherosclerosis and Associated Therapeutics. Frontiers in Cell and Developmental Biology, 10, Article 823387.
https://doi.org/10.3389/fcell.2022.823387
[34]  Luan, F., Rao, Z., Peng, L., Lei, Z., Zeng, J., Peng, X., et al. (2022) Cinnamic Acid Preserves against Myocardial Ischemia/Reperfusion Injury via Suppression of NLRP3/Caspase-1/GSDMD Signaling Pathway. Phytomedicine, 100, Article 154047.
https://doi.org/10.1016/j.phymed.2022.154047
[35]  Yu, Y., Que, J., Liu, S., Huang, K., Qian, L., Weng, Y., et al. (2022) Sodium-Glucose Co-Transporter-2 Inhibitor of Dapagliflozin Attenuates Myocardial Ischemia/Reperfusion Injury by Limiting NLRP3 Inflammasome Activation and Modulating Autophagy. Frontiers in Cardiovascular Medicine, 8, Article 768214.
https://doi.org/10.3389/fcvm.2021.768214
[36]  Bai, H., Xu, S., Shi, J., Ding, Y., Liu, Q., Jiang, C., et al. (2023) Electroacupuncture Preconditioning Protects against Myocardial Ischemia-Reperfusion Injury by Modulating Dynamic Inflammatory Response. Heliyon, 9, e19396.
https://doi.org/10.1016/j.heliyon.2023.e19396
[37]  Mangan, M.S.J., Olhava, E.J., Roush, W.R., Seidel, H.M., Glick, G.D. and Latz, E. (2018) Erratum: Targeting the NLRP3 Inflammasome in Inflammatory Diseases. Nature Reviews Drug Discovery, 17, Article No. 688.
https://doi.org/10.1038/nrd.2018.149
[38]  Zhou, W., Yang, Y., Feng, Z., Zhang, Y., Chen, Y., Yu, T., et al. (2024) Inhibition of Caspase-1-Dependent Pyroptosis Alleviates Myocardial Ischemia/Reperfusion Injury during Cardiopulmonary Bypass (CPB) in Type 2 Diabetic Rats. Scientific Reports, 14, Article No. 19420.
https://doi.org/10.1038/s41598-024-70477-5
[39]  Chai, X., Liang, Z., Zhang, J., Ding, J., Zhang, Q., Lv, S., et al. (2023) Chlorogenic Acid Protects against Myocardial Ischemia-Reperfusion Injury in Mice by Inhibiting Lnc Neat1/NLRP3 Inflammasome-Mediated Pyroptosis. Scientific Reports, 13, Article No. 17803.
https://doi.org/10.1038/s41598-023-45017-2
[40]  Sun, F., An, C., Liu, C., Hu, Y., Su, Y., Guo, Z., et al. (2023) FTO Represses NLRP3-Mediated Pyroptosis and Alleviates Myocardial Ischemia-Reperfusion Injury via Inhibiting CBL-Mediated Ubiquitination and Degradation of β-Catenin. The FASEB Journal, 37, e22964.
https://doi.org/10.1096/fj.202201793rr
[41]  Zhuang, Y., Yasinta, M., Hu, C., Zhao, M., Ding, G., Bai, M., et al. (2015) Mitochondrial Dysfunction Confers Albumin-Induced NLRP3 Inflammasome Activation and Renal Tubular Injury. American Journal of Physiology-Renal Physiology, 308, F857-F866.
https://doi.org/10.1152/ajprenal.00203.2014
[42]  Bassiouni, W., Valencia, R., Mahmud, Z., Seubert, J.M. and Schulz, R. (2023) Matrix Metalloproteinase-2 Proteolyzes Mitofusin-2 and Impairs Mitochondrial Function during Myocardial Ischemia-Reperfusion Injury. Basic Research in Cardiology, 118, Article No. 29.
https://doi.org/10.1007/s00395-023-00999-y
[43]  Chen, X., Wang, J., Cheng, S., Wang, Y., Deng, M., Yu, T., et al. (2023) Corrigendum: Diazoxide Post-Conditioning Activates the HIF-1/HRE Pathway to Induce Myocardial Protection in Hypoxic/Reoxygenated Cardiomyocytes. Frontiers in Cardiovascular Medicine, 10, Article 1281995.
https://doi.org/10.3389/fcvm.2023.1281995
[44]  Exconde, P.M., Bourne, C.M., Kulkarni, M., Discher, B.M. and Taabazuing, C.Y. (2024) Inflammatory Caspase Substrate Specificities. mBio, 15, e02975-23.
https://doi.org/10.1128/mbio.02975-23
[45]  Syed Abd Halim, S.A., Abd Rashid, N., Woon, C.K. and Abdul Jalil, N.A. (2023) Natural Products Targeting PI3K/AKT in Myocardial Ischemic Reperfusion Injury: A Scoping Review. Pharmaceuticals, 16, Article 739.
https://doi.org/10.3390/ph16050739
[46]  Wang, J. and Li, J. (2009) Activated Protein C: A Potential Cardioprotective Factor against Ischemic Injury during Ische-mia/Reperfusion. American Journal of Translational Research, 1, 381-392.
[47]  Wen, C., Xue, F., Wang, Y., Jin, J. and Liao, X. (2022) Hypercholesterolemia Attenuates Cardioprotection of Ischemic Preconditioning and Postconditioning with Α7 Nicotinic Acetylcholine Receptor Agonist by Enhancing Inflammation and Inhibiting the PI3K/Akt/eNOS Pathway. Experimental and Therapeutic Medicine, 23, Article No. 342.
https://doi.org/10.3892/etm.2022.11272
[48]  Han, H., Dong, P. and Liu, K. (2022) The Role of NF-κB in Myocardial Ischemia/Reperfusion Injury. Current Protein & Peptide Science, 23, 535-547.
https://doi.org/10.2174/1389203723666220817085941
[49]  Yao, Y., Li, F., Zhang, M., Jin, L., Xie, P., Liu, D., et al. (2022) Targeting Camkii-Δ9 Ameliorates Cardiac Ischemia/Reperfusion Injury by Inhibiting Myocardial Inflammation. Circulation Research, 130, 887-903.
https://doi.org/10.1161/circresaha.121.319478
[50]  Gray, C.B.B., Suetomi, T., Xiang, S., Mishra, S., Blackwood, E.A., Glembotski, C.C., et al. (2017) Camkiiδ Subtypes Differentially Regulate Infarct Formation Following Ex Vivo Myocardial Ischemia/reperfusion through NF-κB and TNF-α. Journal of Molecular and Cellular Cardiology, 103, 48-55.
https://doi.org/10.1016/j.yjmcc.2017.01.002
[51]  Chang, C., Cai, R., Su, Y., Wu, Q. and Su, Q. (2023) Mesenchymal Stem Cell-Derived Exosomal Noncoding RNAs as Alternative Treatments for Myocardial Ischemia-Reperfusion Injury: Current Status and Future Perspectives. Journal of Cardiovascular Translational Research, 16, 1085-1098.
https://doi.org/10.1007/s12265-023-10401-w
[52]  Zhang, S., Li, P., Zhao, L. and Xu, L. (2018) LINC00210 as a miR-328-5p Sponge Promotes Nasopharyngeal Carcinoma Tumorigenesis by Activating NOTCH3 Pathway. Bioscience Reports, 38, BSR20181168.
https://doi.org/10.1042/bsr20181168
[53]  Kong, Y., Liang, X., Liu, L., Zhang, D., Wan, C., Gan, Z., et al. (2015) High Throughput Sequencing Identifies Micrornas Mediating Α-Synuclein Toxicity by Targeting Neuroactive-Ligand Receptor Interaction Pathway in Early Stage of Drosophila Parkinson’s Disease Model. PLOS ONE, 10, e0137432.
https://doi.org/10.1371/journal.pone.0137432
[54]  Zilun, W., Shuaihua, Q., Jinxuan, Z., Yihai, L., Qiaoling, L., Zhonghai, W., et al. (2020) Corrigendum to miRNA-181a Over-Expression in Mesenchymal Stem Cell-Derived Exosomes Influenced Inflammatory Response after Myocardial Ischemia-Reperfusion Injury. Life Sciences, 256, Article 118045.
https://doi.org/10.1016/j.lfs.2020.118045
[55]  Zhao, J., Li, X., Hu, J., Chen, F., Qiao, S., Sun, X., et al. (2019) Mesenchymal Stromal Cell-Derived Exosomes Attenuate Myocardial Ischaemia-Reperfusion Injury through miR-182-Regulated Macrophage Polarization. Cardiovascular Research, 115, 1205-1216.
https://doi.org/10.1093/cvr/cvz040
[56]  O’Neill, L.A.J. and Bowie, A.G. (2007) The Family of Five: Tir-Domain-Containing Adaptors in Toll-Like Receptor Signalling. Nature Reviews Immunology, 7, 353-364.
https://doi.org/10.1038/nri2079
[57]  Yuan, X., Juan, Z., Zhang, R., Sun, X., Yan, R., Yue, F., et al. (2020) Clemastine Fumarate Protects against Myocardial Ischemia Reperfusion Injury by Activating the TLR4/PI3K/Akt Signaling Pathway. Frontiers in Pharmacology, 11, Article 28.
https://doi.org/10.3389/fphar.2020.00028
[58]  Yue, R., Lu, S., Luo, Y., Zeng, J., Liang, H., Qin, D., et al. (2022) Mesenchymal Stem Cell-Derived Exosomal Microrna-182-5p Alleviates Myocardial Ischemia/Reperfusion Injury by Targeting GSDMD in Mice. Cell Death Discovery, 8, Article No. 202.
https://doi.org/10.1038/s41420-022-00909-6
[59]  Sun, M., Wang, R., Xia, R., Xia, Z., Wu, Z. and Wang, T. (2022) Amelioration of Myocardial Ischemia/Reperfusion Injury in Diabetes: A Narrative Review of the Mechanisms and Clinical Applications of Dexmedetomidine. Frontiers in Pharmacology, 13, Article 949754.
https://doi.org/10.3389/fphar.2022.949754

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133