|
注意缺陷多动障碍儿童的知觉闭合特点:一项事件相关电位研究
|
Abstract:
目的:探讨注意缺陷多动障碍(ADHD)儿童在配对面孔比较任务中对不同模糊程度面孔进行知觉闭合加工的特点。方法:纳入符合美国精神障碍诊断与统计手册第4版(DSM-IV)中ADHD诊断标准的儿童33例,以及正常对照儿童26例。记录两组被试在观看遮挡面孔和完整面孔时的脑电信号,运用事件相关电位(event-related potentials, ERPs)技术比较两组儿童P1、N170和NCL指标波幅和潜伏期上的差异。结果:两组儿童P1成分无显著差异(p > 0.05),ADHD儿童N170潜伏期提前[(197.52 ± 1.52 ) ms vs. (204.58 ± 1.77) ms, p < 0.01],健康儿童在完整面孔条件下,右半球NCL波幅显著大于左半球[(9.31 ± 1.51) μV vs. (7.64 ± 1.37) μV, p < 0.05],而ADHD儿童表现为双侧加工(p > 0.05)。结论:ADHD儿童知觉闭合加工存在明显缺陷,表现出左半球的代偿效应。
Objective: To explore the characteristics of perceptual closure processing of faces with different degrees of blurriness in paired face comparison tasks in children with Attention Deficit/Hyperactivity Disorder (ADHD). Methods: 33 children who met the diagnostic criteria for ADHD in the Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV), and 26 normal control children were included. Record the EEG signals of two groups of subjects when viewing occluded and intact faces, and compare the differences in amplitude and latency of P1, N170, and NCL indicators between the two groups of children using event-related potentials (ERPs) technology. Results: There was no significant difference in the P1 component between the two groups of children (p > 0.05), and the latency of N170 was advanced in ADHD children [(197.52 ± 1.52) ms vs. (204.58 ± 1.77) ms, p < 0.01]. Under intact facial conditions, the amplitude of NCL waves in the right hemisphere of healthy children is significantly greater than that in the left hemisphere [(9.31 ± 1.51) μV vs. (7.64 ± 1.37) μV, p < 0.05]. Children with ADHD exhibit bilateral processing (p > 0.05). Conclusions: Children with ADHD exhibit significant deficits in perceptual closure processing, displaying compensatory effects in the left hemisphere.
[1] | 龚栩, 黄宇霞, 王妍, 罗跃嘉(2011). 中国面孔表情图片系统的修订. 中国心理卫生杂志, 25(1), 40-46. |
[2] | 张厚粲(2009). 韦氏儿童智力量表第四版(WISC-IV)中文版的修订. 心理科学, (5), 1177-1179. |
[3] | Adra, N., Cao, A., Makris, N., & Valera, E. M. (2021). Sensory Modulation Disorder and Its Neural Circuitry in Adults with ADHD: A Pilot Study. Brain Imaging and Behavior, 15, 930-940. https://doi.org/10.1007/s11682-020-00302-w |
[4] | Association, A. P. (1996). Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association. |
[5] | Ayano, G., Demelash, S., Gizachew, Y., Tsegay, L., & Alati, R. (2023). The Global Prevalence of Attention Deficit Hyperactivity Disorder in Children and Adolescents: An Umbrella Review of Meta-Analyses. Journal of Affective Disorders, 339, 860-866. https://doi.org/10.1016/j.jad.2023.07.071 |
[6] | Butler, P. D., Abeles, I. Y., Silverstein, S. M., Dias, E. C., Weiskopf, N. G., Calderone, D. J. et al. (2013). An Event-Related Potential Examination of Contour Integration Deficits in Schizophrenia. Frontiers in Psychology, 4, Article 132. https://doi.org/10.3389/fpsyg.2013.00132 |
[7] | Chapman, A. F., Chunharas, C., & Störmer, V. S. (2023). Feature-Based Attention Warps the Perception of Visual Features. Scientific Reports, 13, Article No. 6487. https://doi.org/10.1038/s41598-023-33488-2 |
[8] | Cohen, J. E., Ross, R. S., & Stern, C. E. (2018). Predictability Matters: Role of the Hippocampus and Prefrontal Cortex in Disambiguation of Overlapping Sequences. Learning & Memory, 25, 335-346. https://doi.org/10.1101/lm.047175.117 |
[9] | Delorme, A., & Makeig, S. (2004). EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. Journal of Neuroscience Methods, 134, 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009 |
[10] | Doniger, G. M., Foxe, J. J., Murray, M. M., Higgins, B. A., Snodgrass, J. G., Schroeder, C. E. et al. (2000). Activation Timecourse of Ventral Visual Stream Object-Recognition Areas: High Density Electrical Mapping of Perceptual Closure Processes. Journal of Cognitive Neuroscience, 12, 615-621. https://doi.org/10.1162/089892900562372 |
[11] | Emond, V., Joyal, C., & Poissant, H. (2009). Neuroanatomie structurelle et fonctionnelle du trouble déficitaire d’attention avec ou sans hyperactivité (TDAH). L’Encéphale, 35, 107-114. https://doi.org/10.1016/j.encep.2008.01.005 |
[12] | Grützner, C., Uhlhaas, P. J., Genc, E., Kohler, A., Singer, W., & Wibral, M. (2010). Neuroelectromagnetic Correlates of Perceptual Closure Processes. Journal of Neuroscience, 30, 8342-8352. https://doi.org/10.1523/jneurosci.5434-09.2010 |
[13] | Guo, F., Wang, C., Tao, G., Ma, H., Zhang, J., & Wang, Y. (2024). A Longitudinal Study on the Impact of High-Altitude Hypoxia on Perceptual Processes. Psychophysiology, 61, e14548. https://doi.org/10.1111/psyp.14548 |
[14] | Lenartowicz, A., & Loo, S. K. (2014). Use of EEG to Diagnose ADHD. Current Psychiatry Reports, 16, Article No. 498. https://doi.org/10.1007/s11920-014-0498-0 |
[15] | Lesinger, K., Rosenthal, G., Pierce, K., Courchesne, E., Dinstein, I., & Avidan, G. (2023). Functional Connectivity of the Human Face Network Exhibits Right Hemispheric Lateralization from Infancy to Adulthood. Scientific Reports, 13, Article No. 20831. https://doi.org/10.1038/s41598-023-47581-z |
[16] | Liu, C., Sha, S., Zhang, X., Bian, Z., Lu, L., Hao, B. et al. (2020). The Time Course of Perceptual Closure of Incomplete Visual Objects: An Event-Related Potential Study. Computational Intelligence and Neuroscience, 2020, 1-7. https://doi.org/10.1155/2020/8825197 |
[17] | Luo, X., Dang, C., Guo, J., Li, D., Wang, E., Zhu, Y. et al. (2023). Overactivated Contextual Visual Perception and Response to a Single Dose of Methylphenidate in Children with ADHD. European Archives of Psychiatry and Clinical Neuroscience, 274, 35-44. https://doi.org/10.1007/s00406-023-01559-0 |
[18] | Mesulam, M. (1998). From Sensation to Cognition. Brain, 121, 1013-1052. https://doi.org/10.1093/brain/121.6.1013 |
[19] | Nazari, M. A., Berquin, P., Missonnier, P., Aarabi, A., Debatisse, D., De Broca, A. et al. (2010). Visual Sensory Processing Deficit in the Occipital Region in Children with Attention-Deficit/Hyperactivity Disorder as Revealed by Event-Related Potentials during Cued Continuous Performance Test. Neurophysiologie Clinique/Clinical Neurophysiology, 40, 137-149. https://doi.org/10.1016/j.neucli.2010.03.001 |
[20] | Papp, S., Tombor, L., Kakuszi, B., Balogh, L., Réthelyi, J. M., Bitter, I. et al. (2020). Impaired Early Information Processing in Adult ADHD: A High-Density ERP Study. BMC Psychiatry, 20, Article No. 292. https://doi.org/10.1186/s12888-020-02706-w |
[21] | Peasgood, T., Bhardwaj, A., Biggs, K., Brazier, J. E., Coghill, D., Cooper, C. L. et al. (2016). The Impact of ADHD on the Health and Well-Being of ADHD Children and Their Siblings. European Child & Adolescent Psychiatry, 25, 1217-1231. https://doi.org/10.1007/s00787-016-0841-6 |
[22] | Ploran, E. J., Nelson, S. M., Velanova, K., Donaldson, D. I., Petersen, S. E., & Wheeler, M. E. (2007). Evidence Accumulation and the Moment of Recognition: Dissociating Perceptual Recognition Processes Using fMRI. The Journal of Neuroscience, 27, 11912-11924. https://doi.org/10.1523/jneurosci.3522-07.2007 |
[23] | Poscoliero, T., & Girelli, M. (2018). Electrophysiological Modulation in an Effort to Complete Illusory Figures: Configuration, Illusory Contour and Closure Effects. Brain Topography, 31, 202-217. https://doi.org/10.1007/s10548-017-0582-y |
[24] | Sehatpour, P., Molholm, S., Javitt, D. C., & Foxe, J. J. (2006). Spatiotemporal Dynamics of Human Object Recognition Processing: An Integrated High-Density Electrical Mapping and Functional Imaging Study of “Closure” Processes. NeuroImage, 29, 605-618. https://doi.org/10.1016/j.neuroimage.2005.07.049 |
[25] | Shao, H., Weng, X., & He, S. (2017). Functional Organization of the Face-Sensitive Areas in Human Occipital-Temporal Cortex. NeuroImage, 157, 129-143. https://doi.org/10.1016/j.neuroimage.2017.05.061 |
[26] | Shi, J., Gong, X., Song, Z., Xie, W., Yang, Y., Sun, X. et al. (2024). EPAT: A User-Friendly MATLAB Toolbox for EEG/ERP Data Processing and Analysis. Frontiers in Neuroinformatics, 18, Article 1384250. https://doi.org/10.3389/fninf.2024.1384250 |
[27] | Snodgrass, J. G., & Feenan, K. (1990). Priming Effects in Picture Fragment Completion: Support for the Perceptual Closure Hypothesis. Journal of Experimental Psychology: General, 119, 276-296. https://doi.org/10.1037//0096-3445.119.3.276 |
[28] | Tanaka, J. W., & Simonyi, D. (2016). The “Parts and Wholes” of Face Recognition: A Review of the Literature. Quarterly Journal of Experimental Psychology, 69, 1876-1889. https://doi.org/10.1080/17470218.2016.1146780 |
[29] | Usler, E., Foti, D., & Weber, C. (2020). Emotional Reactivity and Regulation in 5 to 8-Year-Old Children: An ERP Study of Own-Age Face Processing. International Journal of Psychophysiology, 156, 60-68. https://doi.org/10.1016/j.ijpsycho.2020.07.004 |
[30] | Yasumura, A., Omori, M., Fukuda, A., Takahashi, J., Yasumura, Y., Nakagawa, E. et al. (2019). Age-Related Differences in Frontal Lobe Function in Children with ADHD. Brain and Development, 41, 577-586. https://doi.org/10.1016/j.braindev.2019.03.006 |
[31] | Zhang, J., Yang, X., Jin, Z., & Li, L. (2021). Where There Is No Object Formation, There Is No Perceptual Organization: Evidence from the Configural Superiority Effect. NeuroImage, 237, Article 118108. https://doi.org/10.1016/j.neuroimage.2021.118108 |