全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

香兰素衍生物的合成与生物活性的前沿探索
Frontier Exploration of Synthesis and Biological Activity of Vanillin Derivatives

DOI: 10.12677/jocr.2025.131002, PP. 13-20

Keywords: 香兰素,衍生物,生物活性
Vanillin
, Derivatives, Bioactivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

香兰素是食品添加剂中广泛使用的天然香料,因其自身在多种领域展现出色的生物活性,其独特的结构框架有助于与各种有效的基团直接、高效、低成本地结合,所以对其药用活性衍生物的研究引起广泛关注。在此背景下,这篇综述阐述对香兰素进行结构修饰和改造,合成出具有各种独特生物活性的香兰素衍生物。通过深入研究这些香兰素衍生化合物的设计、合成、生物活性,有助于深入理解结构与性能的关系。还概述了探索这种物质的更多可能方向。
Vanillin is a widely used natural flavoring in food additives. Due to its excellent bioactivity in various fields and its unique structural framework that facilitates direct, efficient, and cost-effective combination with a variety of active groups, research on its medicinal active derivatives has attracted widespread attention. Against this backdrop, this review discusses the structural modification and transformation of vanillin to synthesize vanillin derivatives with various unique bioactivities. In-depth studies on the design, synthesis, and bioactivity of these vanillin derivative compounds contribute to a deeper understanding of the relationship between structure and performance. It also outlines more potential directions for exploring this substance.

References

[1]  Jadhav, D., B.N., R., Gogate, P.R. and Rathod, V.K. (2009) Extraction of Vanillin from Vanilla Pods: A Comparison Study of Conventional Soxhlet and Ultrasound Assisted Extraction. Journal of Food Engineering, 93, 421-426.
https://doi.org/10.1016/j.jfoodeng.2009.02.007
[2]  Zheng, M., Lai, H. and Lin, K.A. (2018) Valorization of Vanillyl Alcohol by Pigments: Prussian Blue Analogue as a Highly-Effective Heterogeneous Catalyst for Aerobic Oxidation of Vanillyl Alcohol to Vanillin. Waste and Biomass Valorization, 10, 2933-2942.
https://doi.org/10.1007/s12649-018-0280-3
[3]  Hernández-Vázquez, E., Castañeda-Arriaga, R., Ramírez-Espinosa, J.J., Medina-Campos, O.N., Hernández-Luis, F., Chaverri, J.P., et al. (2015) 1,5-Diarylpyrazole and Vanillin Hybrids: Synthesis, Biological Activity and DFT Studies. European Journal of Medicinal Chemistry, 100, 106-118.
https://doi.org/10.1016/j.ejmech.2015.06.010
[4]  Hernández-Vázquez, E., Salgado-Barrera, S., Ramírez-Espinosa, J.J., Estrada-Soto, S. and Hernández-Luis, F. (2016) Synthesis and Molecular Docking of N’-Arylidene-5-(4-Chlorophenyl)-1-(3,4-Dichlorophenyl)-4-Methyl-1h-Pyrazole-3-Carbohydrazides as Novel Hypoglycemic and Antioxidant Dual Agents. Bioorganic & Medicinal Chemistry, 24, 2298-2306.
https://doi.org/10.1016/j.bmc.2016.04.007
[5]  Ogawa, K., Tashima, A., Sadakata, M. and Morinaga, O. (2018) Appetite-Enhancing Effects of Vanilla Flavours Such as Vanillin. Journal of Natural Medicines, 72, 798-802.
https://doi.org/10.1007/s11418-018-1206-x
[6]  Burri, J., Graf, M., Lambelet, P. and Löliger, J. (1989) Vanillin: More than a Flavouring Agent—A Potent Antioxidant. Journal of the Science of Food and Agriculture, 48, 49-56.
https://doi.org/10.1002/jsfa.2740480107
[7]  Liaqat, F., Xu, L., Khazi, M.I., Ali, S., Rahman, M.U. and Zhu, D. (2023) Extraction, Purification, and Applications of Vanillin: A Review of Recent Advances and Challenges. Industrial Crops and Products, 204, Article ID: 117372.
https://doi.org/10.1016/j.indcrop.2023.117372
[8]  Dalmolin, L.F., Khalil, N.M. and Mainardes, R.M. (2016) Delivery of Vanillin by Poly(lactic-Acid) Nanoparticles: Development, Characterization and in Vitro Evaluation of Antioxidant Activity. Materials Science and Engineering: C, 62, 1-8.
https://doi.org/10.1016/j.msec.2016.01.031
[9]  Thevenon, A., Garden, J.A., White, A.J.P. and Williams, C.K. (2015) Dinuclear Zinc Salen Catalysts for the Ring Opening Copolymerization of Epoxides and Carbon Dioxide or Anhydrides. Inorganic Chemistry, 54, 11906-11915.
https://doi.org/10.1021/acs.inorgchem.5b02233
[10]  Kiran, K., Sarasija, M., Ananda Rao, B., et al. (2019) Design, Synthesis, and Biological Activity of New Bis-1,2,3-Triazole Derivatives Bearing Thiophene-Chalcone Moiety. Russian Journal of General Chemistry, 89, 1859-1866.
[11]  Wang, Y., Luo, Y., Hu, D. and Song, B. (2022) Design, Synthesis, Anti-Tomato Spotted Wilt Virus Activity, and Mechanism of Action of Thienopyrimidine-Containing Dithioacetal Derivatives. Journal of Agricultural and Food Chemistry, 70, 6015-6025.
https://doi.org/10.1021/acs.jafc.2c00773
[12]  Zhao, L., Hu, D., Wu, Z., Wei, C., Wu, S. and Song, B. (2022) Coumarin Derivatives Containing Sulfonamide and Dithioacetal Moieties: Design, Synthesis, Antiviral Activity, and Mechanism. Journal of Agricultural and Food Chemistry, 70, 5773-5783.
https://doi.org/10.1021/acs.jafc.2c00672
[13]  Zhu, L., Zhu, X. and Wu, Y. (2022) Effects of Glucose Metabolism, Lipid Metabolism, and Glutamine Metabolism on Tumor Microenvironment and Clinical Implications. Biomolecules, 12, Article No. 580.
https://doi.org/10.3390/biom12040580
[14]  Gazolla, P.A.R., de Aguiar, A.R., Costa, M.C.A., Oliveira, O.V., Costa, A.V., da Silva, C.M., et al. (2023) Synthesis of Vanillin Derivatives with 1,2,3‐Triazole Fragments and Evaluation of Their Fungicide and Fungistatic Activities. Archiv der Pharmazie, 356, Article ID: 2200653.
https://doi.org/10.1002/ardp.202200653
[15]  Jung, H.A., Jung, Y.J., Hyun, S.K., Min, B., Kim, D., Jung, J.H., et al. (2010) Selective Cholinesterase Inhibitory Activities of a New Monoterpene Diglycoside and Other Constituents from Nelumbo Nucifera Stamens. Biological and Pharmaceutical Bulletin, 33, 267-272.
https://doi.org/10.1248/bpb.33.267
[16]  Liu, Y., Zhu, J., Yu, J., Chen, X., Zhang, S., Cai, Y., et al. (2021) A New Functionality Study of Vanillin as the Inhibitor for Α-Glucosidase and Its Inhibition Kinetic Mechanism. Food Chemistry, 353, Article ID: 129448.
https://doi.org/10.1016/j.foodchem.2021.129448
[17]  Wang, H. and Zhang, H. (2018) Reconsideration of Anticholinesterase Therapeutic Strategies against Alzheimer’s Disease. ACS Chemical Neuroscience, 10, 852-862.
https://doi.org/10.1021/acschemneuro.8b00391
[18]  Avetyan, D.L., Shatskiy, A., Kärkäs, M.D. and Stepanova, E.V. (2022) Scalable Total Synthesis of Natural Vanillin-Derived Glucoside Ω-Esters. Carbohydrate Research, 522, Article ID: 108683.
https://doi.org/10.1016/j.carres.2022.108683
[19]  Stepanova, E.V., Belyanin, M.L. and Filimonov, V.D. (2014) Synthesis of Acyl Derivatives of Salicin, Salirepin, and Arbutin. Carbohydrate Research, 388, 105-111.
https://doi.org/10.1016/j.carres.2014.02.014
[20]  Arca, H.C., Mosquera-Giraldo, L.I., Bi, V., Xu, D., Taylor, L.S. and Edgar, K.J. (2018) Pharmaceutical Applications of Cellulose Ethers and Cellulose Ether Esters. Biomacromolecules, 19, 2351-2376.
https://doi.org/10.1021/acs.biomac.8b00517
[21]  Kar, S.S., Bhat, V.G., Shenoy, V.P., Bairy, I. and Shenoy, G.G. (2018) Design, Synthesis, and Evaluation of Novel Diphenyl Ether Derivatives against Drug‐Susceptible and Drug‐Resistant Strains of Mycobacterium tuberculosis. Chemical Biology & Drug Design, 93, 60-66.
https://doi.org/10.1111/cbdd.13379
[22]  Zhu, Y., Mampuys, P., Sergeyev, S., Ballet, S. and Maes, B.U.W. (2017) Amine Activation: n‐Arylamino Acid Amide Synthesis from Isothioureas and Amino Acids. Advanced Synthesis & Catalysis, 359, 2481-2498.
https://doi.org/10.1002/adsc.201700134
[23]  Hu, S., Wang, Y., Wang, K., Yang, D., Chen, L., An, Z., et al. (2024) Design, Synthesis, and Herbicidal Activity of Pyrazole Amide Derivatives as Potential Transketolase Inhibitors. Journal of Agricultural and Food Chemistry, 72, 3334-3341.
https://doi.org/10.1021/acs.jafc.3c06306
[24]  Chen, L., Xie, J., Song, H., Liu, Y., Gu, Y., Wang, L., et al. (2016) Design, Synthesis, and Biological Activities of Spirooxindoles Containing Acylhydrazone Fragment Derivatives Based on the Biosynthesis of Alkaloids Derived from Tryptophan. Journal of Agricultural and Food Chemistry, 64, 6508-6516.
https://doi.org/10.1021/acs.jafc.6b02683
[25]  Aggarwal, N., Kumar, R., Srivastva, C., Dureja, P. and Khurana, J.M. (2010) Synthesis of Nalidixic Acid Based Hydrazones as Novel Pesticides. Journal of Agricultural and Food Chemistry, 58, 3056-3061.
https://doi.org/10.1021/jf904144e
[26]  Luo, D., Guo, S., He, F., Chen, S., Dai, A., Zhang, R., et al. (2020) Design, Synthesis, and Bioactivity of Α-Ketoamide Derivatives Bearing a Vanillin Skeleton for Crop Diseases. Journal of Agricultural and Food Chemistry, 68, 7226-7234.
https://doi.org/10.1021/acs.jafc.0c00724
[27]  Scipioni, M., Kay, G., Megson, I. and Kong Thoo Lin, P. (2018) Novel Vanillin Derivatives: Synthesis, Anti-Oxidant, DNA and Cellular Protection Properties. European Journal of Medicinal Chemistry, 143, 745-754.
https://doi.org/10.1016/j.ejmech.2017.11.072
[28]  Kumar, A., Singh, V., Mishra, A.K., Singh, H., Parvez, S., Sonu, et al. (2025) Synthesis, Characterization and Computational Studies of Some New Vanillin Derivatives for Cosmetic Purpose. Journal of Molecular Structure, 1327, Article ID: 141127.
https://doi.org/10.1016/j.molstruc.2024.141127
[29]  Ho, K., Yazan, L.S., Ismail, N. and Ismail, M. (2009) Apoptosis and Cell Cycle Arrest of Human Colorectal Cancer Cell Line HT-29 Induced by Vanillin. Cancer Epidemiology, 33, 155-160.
https://doi.org/10.1016/j.canep.2009.06.003
[30]  Birar, V.C., Zaid, G. and Blagg, B.S.J. (2021) Reaction between Harmaline and Vanillin to Produce Dimeric Scaffolds That Exhibit Anti-Proliferative Activity. Tetrahedron Letters, 73, Article ID: 153139.
https://doi.org/10.1016/j.tetlet.2021.153139
[31]  Narode, H., Gayke, M., Bhosale, R.S., Eppa, G., Gohil, N., Bhattacharjee, G., et al. (2022) Vanillin Containing 9h-Fluoren Sulfone Scaffolds: Synthesis, Biological Evaluation and Molecular Docking Study. Results in Chemistry, 4, Article ID: 100269.
https://doi.org/10.1016/j.rechem.2021.100269
[32]  Rais-Bahrami, K., Majd, M., Veszelovszky, E. and Short, B.L. (2004) Use of Furosemide and Hearing Loss in Neonatal Intensive Care Survivors. American Journal of Perinatology, 21, 329-332.
https://doi.org/10.1055/s-2004-831887
[33]  Duarte, J.D. and Cooper-DeHoff, R.M. (2010) Mechanisms for Blood Pressure Lowering and Metabolic Effects of Thiazide and Thiazide-Like Diuretics. Expert Review of Cardiovascular Therapy, 8, 793-802.
https://doi.org/10.1586/erc.10.27
[34]  Huang, F. and Batey, R.A. (2007) Cross-Coupling of Organoboronic Acids and Sulfinate Salts Using Catalytic Copper(II) Acetate and 1,10-Phenanthroline: Synthesis of Aryl and Alkenylsulfones. Tetrahedron, 63, 7667-7672.
https://doi.org/10.1016/j.tet.2007.05.029
[35]  Chen, J., Shi, J., Yu, L., Liu, D., Gan, X., Song, B., et al. (2018) Design, Synthesis, Antiviral Bioactivity, and Defense Mechanisms of Novel Dithioacetal Derivatives Bearing a Strobilurin Moiety. Journal of Agricultural and Food Chemistry, 66, 5335-5345.
https://doi.org/10.1021/acs.jafc.8b01297
[36]  Shao, S., Cheng, X., Zheng, R., Zhang, S., Yu, Z., Wang, H., et al. (2022) Sex-Related Deposition and Metabolism of Vanisulfane, a Novel Vanillin-Derived Pesticide, in Rats and Its Hepatotoxic and Gonadal Effects. Science of the Total Environment, 813, Article ID: 152545.
https://doi.org/10.1016/j.scitotenv.2021.152545
[37]  Liu, D., Song, R., Wu, Z., Xing, Z. and Hu, D. (2022) Pyrido [1,2-a] Pyrimidinone Mesoionic Compounds Containing Vanillin Moiety: Design, Synthesis, Antibacterial Activity, and Mechanism. Journal of Agricultural and Food Chemistry, 70, 10443-10452.
https://doi.org/10.1021/acs.jafc.2c01838
[38]  Raghavan, S., Manogaran, P., Kalpattu Kuppuswami, B., Venkatraman, G. and Gadepalli Narasimha, K.K. (2015) Synthesis and Anticancer Activity of Chalcones Derived from Vanillin and Isovanillin. Medicinal Chemistry Research, 24, 4157-4165.
https://doi.org/10.1007/s00044-015-1453-2
[39]  Kamal, A., Ramakrishna, G., Raju, P., Viswanath, A., Janaki Ramaiah, M., Balakishan, G., et al. (2010) Synthesis and Anti-Cancer Activity of Chalcone Linked Imidazolones. Bioorganic & Medicinal Chemistry Letters, 20, 4865-4869.
https://doi.org/10.1016/j.bmcl.2010.06.097
[40]  Chinh, L., Hung, T., Nga, N., phong, L., Huong, L., Ha, T., et al. (2014) New Chalcones Containing Nucleosides Exhibiting in Vitro Anti-Cancer Activities. Letters in Organic Chemistry, 11, 534-545.
https://doi.org/10.2174/1570178611666140401221121
[41]  Gupta, S.C., Kismali, G. and Aggarwal, B.B. (2013) Curcumin, a Component of Turmeric: From Farm to Pharmacy. BioFactors, 39, 2-13.
https://doi.org/10.1002/biof.1079
[42]  Lou, M., Li, S., Jin, F., Yang, T., Song, R. and Song, B. (2024) Pesticide Engineering from Natural Vanillin: Recent Advances and a Perspective. Engineering, 43, 241-257.
https://doi.org/10.1016/j.eng.2024.06.015
[43]  Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. and Miao, Z. (2017) Chalcone: A Privileged Structure in Medicinal Chemistry. Chemical Reviews, 117, 7762-7810.
https://doi.org/10.1021/acs.chemrev.7b00020
[44]  Fitzgerald, D.J., Stratford, M., Gasson, M.J. and Narbad, A. (2005) Structure-Function Analysis of the Vanillin Molecule and Its Antifungal Properties. Journal of Agricultural and Food Chemistry, 53, 1769-1775.
https://doi.org/10.1021/jf048575t
[45]  Soobrattee, M.A., Neergheen, V.S., Luximon-Ramma, A., Aruoma, O.I. and Bahorun, T. (2005) Phenolics as Potential Antioxidant Therapeutic Agents: Mechanism and Actions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 579, 200-213.
https://doi.org/10.1016/j.mrfmmm.2005.03.023
[46]  Yemis, G.P., Pagotto, F., Bach, S. and Delaquis, P. (2011) Effect of Vanillin, Ethyl Vanillin, and Vanillic Acid on the Growth and Heat Resistance of Cronobacter Species. Journal of Food Protection, 74, 2062-2069.
https://doi.org/10.4315/0362-028x.jfp-11-230
[47]  Pohl, F., Goua, M., Bermano, G., Russell, W.R., Scobbie, L., Maciel, P., et al. (2018) Revalorisation of Rapeseed Pomace Extracts: An in Vitro Study into Its Anti-Oxidant and DNA Protective Properties. Food Chemistry, 239, 323-332.
https://doi.org/10.1016/j.foodchem.2017.06.129
[48]  Commey, L., Mechref, Y., Burow, M. and Mendu, V. (2024) Identification and Characterization of Peanut Seed Coat Secondary Metabolites Inhibiting Aspergillus flavus Growth and Reducing Aflatoxin Contamination. Journal of Agricultural and Food Chemistry, 72, 23844-23858.
https://doi.org/10.1021/acs.jafc.4c05517
[49]  Lv, B., Zhang, X., Wang, Y., Wu, W., Li, D. and Hu, Z. (2024) Discovery of the Chlorinated and Ammoniated Derivatives of Vanillin as Potential Insecticidal Candidates Targeting V-Atpase: Structure-Based Virtual Screening, Synthesis, and Bioassay. Journal of Agricultural and Food Chemistry, 72, 20872-20881.
https://doi.org/10.1021/acs.jafc.4c05174

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133