|
GFRP筋增强水泥基复合材料柱的抗侧向冲击性能及残余侧向承载性能试验研究
|
Abstract:
近年来,船舶撞击桥墩柱的事故时有发生,在此类撞击作用下钢筋混凝土墩柱易出现损伤或发生破坏,可能导致桥梁上部结构局部或整体坍塌,造成惨重的损失。纤维增强复合材料(FRP)筋具有质量轻、抗拉强度高、耐腐蚀性良好等优点,水泥基复合材料(CBC)具有较高的强度、良好的致密性以及优异的抗裂性能等特点。FRP筋增强水泥基复合材料组合结构的抗冲击性能与设计是值得关注的问题。因此,本文针对这一问题开展研究,以玻璃纤维(GFRP)筋增强水泥基复合材料柱为研究对象,通过摆锤冲击试验和侧向静力加载试验相结合的方法,研究了组合柱的抗侧向冲击性能和冲击致损后的侧向残余承载能力。结果表明:相比于GFRP筋增强普通混凝土柱,GFRP筋增强水泥基复合材料柱具有更好的抗冲击性能,能够降低35%左右的峰值位移,而在静力承载方面,具有更大的侧向刚度和侧向承载力,其静态承载力提升了43%。
In recent years, ship collisions with bridge piers have occurred frequently. Under such impact loads, reinforced concrete piers are prone to damage or failure, which may lead to partial or complete collapse of the bridge superstructure, resulting in devastating losses. Fiber-reinforced polymer (FRP) bars offer advantages such as light weight, high tensile strength, and excellent corrosion resistance, while cement-based composites (CBC) exhibit high strength, good compactness, and superior crack resistance. The impact resistance and design of FRP-reinforced cement-based composite structures are therefore important issues worthy of attention. To address this, this study focuses on glass fiber-reinforced polymer (GFRP) bar-reinforced cement-based composite columns. Through a combination of pendulum impact tests and lateral static loading tests, the lateral impact resistance and residual lateral load-bearing capacity of the composite columns after impact damage were investigated. The results indicate that, compared to GFRP-reinforced normal concrete columns, GFRP-reinforced cement-based composite columns demonstrate better impact resistance, reducing peak displacement by approximately 35%. In terms of static load-bearing capacity, they exhibit greater lateral stiffness and lateral load-bearing capacity, with a 43% increase in static load-bearing capacity.
[1] | 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021. |
[2] | 单亦石, 毛可佳. 我国海洋工程的发展现状及远景展望[J]. 海洋开发与管理, 2021, 38(8): 77-81. |
[3] | 王文炜, 李果. 纤维增强塑料(FRP)在混凝土结构中的研究与应用[J]. 混凝土, 2001(10): 37-39. |
[4] | 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3): 24-36. |
[5] | 薛伟辰, 康清梁. 纤维塑料筋在混凝土结构中的应用[J]. 工业建筑, 1999, 29(2): 20-22+29. |
[6] | Liu, T., Xiao, Y., Yang, J. and Chen, B.S. (2017) CFRP Strip Cable Retrofit of RC Frame for Collapse Resistance. Journal of Composites for Construction, 21, Article ID: 04016067. https://doi.org/10.1061/(asce)cc.1943-5614.0000722 |
[7] | Liu, T. and Chen, L. (2019). Numerical Simulation of Vehicle Collision with Reinforced Concrete Piers Protected by FRP-Foam Composites. In: Structures Congress 2019, American Society of Civil Engineers, 70-81. https://doi.org/10.1061/9780784482247.007 |
[8] | 刘涛, 马健超, 陈林, 等. 侧向冲击下CFRP缠绕加固RC悬臂柱动态响应的有限元分析[J]. 自然灾害学报, 2023, 32(1): 139-149. |
[9] | 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6): 45-60. |
[10] | 邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1): 1-13. |
[11] | Liu, T., Zhang, L., An, X. and Chen, L. (2022) Experimental and Numerical Investigation on Collapse Behavior of Precast Reinforced Concrete Beam-Column Sub-Assemblages with Cast-in-Place ECC Joints. Case Studies in Construction Materials, 17, e01421. https://doi.org/10.1016/j.cscm.2022.e01421 |
[12] | 张龙, 刘涛, 陈林, 等. ECC后浇节点装配式混凝土梁-柱子结构倒塌试验[J]. 自然灾害学报, 2023, 32(4): 209-219. |
[13] | 张新越, 欧进萍. FRP加筋混凝土短柱受压性能试验研究[J]. 西安建筑科技大学学报(自然科学版), 2006, 38(4): 467-472+485. |
[14] | 龚永智, 张继文, 蒋丽忠, 等. 高性能CFRP筋混凝土柱的抗震性能[J]. 中南大学学报(自然科学版), 2010, 41(4): 1506-1513. |
[15] | Mohamed, H.M., Afifi, M.Z. and Benmokrane, B. (2014) Performance Evaluation of Concrete Columns Reinforced Longitudinally with FRP Bars and Confined with FRP Hoops and Spirals under Axial Load. Journal of Bridge Engineering, 19, Article ID: 04014020. https://doi.org/10.1061/(asce)be.1943-5592.0000590 |
[16] | Hales, T.A., Pantelides, C.P. and Reaveley, L.D. (2017) Analytical Buckling Model for Slender FRP-Reinforced Concrete Columns. Composite Structures, 176, 33-42. https://doi.org/10.1016/j.compstruct.2017.05.034 |
[17] | Hasan, H.A., Sheikh, M.N. and Hadi, M.N.S. (2019) Maximum Axial Load Carrying Capacity of Fibre Reinforced-Polymer (FRP) Bar Reinforced Concrete Columns under Axial Compression. Structures, 19, 227-233. https://doi.org/10.1016/j.istruc.2018.12.012 |
[18] | Tarawneh, A. and Majdalaweyh, S. (2020) Design and Reliability Analysis of FRP-Reinforced Concrete Columns. Structures, 28, 1580-1588. https://doi.org/10.1016/j.istruc.2020.10.009 |
[19] | Elmesalami, N., Abed, F. and Refai, A.E. (2021) Concrete Columns Reinforced with GFRP and BFRP Bars under Concentric and Eccentric Loads: Experimental Testing and Analytical Investigation. Journal of Composites for Construction, 25, Article ID: 04021003. https://doi.org/10.1061/(asce)cc.1943-5614.0001115 |
[20] | Zhao, D., Zhou, Y., Xing, F., Sui, L., Ye, Z. and Fu, H. (2021) Bond Behavior and Failure Mechanism of Fiber-Reinforced Polymer Bar-Engineered Cementitious Composite Interface. Engineering Structures, 243, Article ID: 112520. https://doi.org/10.1016/j.engstruct.2021.112520 |
[21] | Pham, T.M., Chen, W., Elchalakani, M., Do, T.V. and Hao, H. (2021) Sensitivity of Lateral Impact Response of RC Columns Reinforced with GFRP Bars and Stirrups to Concrete Strength and Reinforcement Ratio. Engineering Structures, 242, Article ID: 112512. https://doi.org/10.1016/j.engstruct.2021.112512 |
[22] | Malamiri, R.H. and Tavakoli, D. (2021) Comparison of the Behavior of FRP Rebar with Steel Rebar in Reinforced Concrete Columns under Impact Loading. Civil Infrastructure Researches, 7, 77-91. |
[23] | Lai, D., Demartino, C., Xu, J., Xu, J. and Xiao, Y. (2022) GFRP Bar RC Columns under Lateral Low-Velocity Impact: An Experimental Investigation. International Journal of Impact Engineering, 170, Article ID: 104365. https://doi.org/10.1016/j.ijimpeng.2022.104365 |
[24] | Jin, L., Zhang, X., Zhang, R. and Du, X. (2023) Numerical Evaluation of Impact Resistance of Concrete Columns Reinforced with GFRP Bars under Various Axial Force Ratios and Impact Velocities. Engineering Structures, 278, Article ID: 115501. https://doi.org/10.1016/j.engstruct.2022.115501 |
[25] | Zhou, D., Chen, L., Demartino, C., Li, L. and Liu, T. (2024) Internal and External Steel-Tube Strengthened RC Columns: Impact Tests and Numerical Simulations. Journal of Constructional Steel Research, 219, Article ID: 108752. https://doi.org/10.1016/j.jcsr.2024.108752 |