全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于微透镜和光子晶体的可调焦亚波长成像系统研究
Research on a Tunable Subwavelength Imaging System Based on Micro-Lenses and Photonic Crystals

DOI: 10.12677/mos.2025.143232, PP. 389-403

Keywords: 光子晶体,硅透镜,亚波长聚焦
Photonic Crystal
, Silicon Lens, Subwavelength Focusing

Full-Text   Cite this paper   Add to My Lib

Abstract:

光束聚焦到亚波长分辨率的聚焦光斑具有非常重大的研究意义,尤其是随着超大规模集成电路的发展,像光信息存储、纳米光刻、光学显微镜等领域都需要聚焦光斑到亚波长,本文旨在实现更小的聚焦光斑和更高分辨率的远场成像,为以上领域提供一些参考价值。文中研究了单个硅微球的亚波长聚焦特性,采用半个椭圆透镜与平凸透镜相结合的组合微透镜,使得入射光能够保持在出射面外部的近场形成良好的亚波长成像。随后通过将组合微透镜和光子晶体结合构成系统,在组合微透镜优秀的亚波长聚焦能力的基础上,再借助光子晶体的负折射效应把组合微透镜在近场的焦斑传播的更远,并通过优化系统的上下边缘和各类参数,使得焦点半宽达到0.3257个波长。该系统通过调整组合微透镜与光子晶体下表面距离,可以有效减小6.1%的焦点半宽,通过适当调节环境温度可以有效改善聚焦效果,使得焦点半宽进一步减小到0.2818个波长,实现了良好的亚波长聚焦效果。
Beam focusing to sub-wavelength resolution of the focused spot has very significant research significance, especially with the development of ultra-large-scale integrated circuits, like optical information storage, nanolithography, optical microscopy and other fields need to focus the spot to the sub-wavelength. This paper aims to achieve a smaller focused spot and higher resolution far-field imaging, to provide some reference value for the above fields. In the paper, the subwavelength focusing characteristics of a single silicon microsphere are investigated, and a combined microlens combining half an ellipsoidal lens and a plano-convex lens is used, which enables the incident light to be kept in the near-field outside the emitting surface to form a good subwavelength imaging. Subsequently, by combining the combined microlens and photonic crystal to form a system, on the basis of the excellent subwavelength focusing ability of the combined microlens, the focal spot of the combined microlens in the near field is propagated farther with the help of the negative refractive effect of the photonic crystal, and by optimizing the upper and lower edges of the system and all kinds of parameters, the focal spot half-width reaches 0.3257 wavelengths. By adjusting the distance between the combined microlens and the lower surface of the photonic crystal, the system can effectively reduce the focal spot half-width by 6.1%, and by adjusting the ambient temperature appropriately, the focusing effect can be effectively improved, so that the focal spot half-width can be further reduced to 0.2818 wavelengths, which realizes a good sub-wavelength focusing effect.

References

[1]  Veselago, V.G. (1968) The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ. Soviet Physics Uspekhi, 10, 509-514.
https://doi.org/10.1070/pu1968v010n04abeh003699
[2]  Pendry, J.B. (2000) Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85, 3966-3969.
https://doi.org/10.1103/physrevlett.85.3966
[3]  Shelby, R.A., Smith, D.R. and Schultz, S. (2001) Experimental Verification of a Negative Index of Refraction. Science, 292, 77-79.
https://doi.org/10.1126/science.1058847
[4]  Algarin, J.M., Freire, M.J., Lopez, M.A., Lapine, M., Jakob, P.M., Behr, V.C., et al. (2011) Analysis of the Resolution of Split-Ring Metamaterial Lenses with Application in Parallel Magnetic Resonance Imaging. Applied Physics Letters, 98, Article 014105.
https://doi.org/10.1063/1.3533394
[5]  Yablonovitch, E. (1987) Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58, 2059-2062.
https://doi.org/10.1103/physrevlett.58.2059
[6]  John, S. (1987) Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters, 58, 2486-2489.
https://doi.org/10.1103/physrevlett.58.2486
[7]  廖振鑫, 刘理, 毛莉莉, 等. 高双折射光子晶体光纤的设计与传感特性分析[J]. 光学技术, 2024, 50(4): 448-452.
[8]  周博林, 李国辉, 吴建红, 等. 低阈值钙钛矿光子晶体激光器[J]. 激光与光电子学进展, 2022, 59(5): 49-64.
[9]  杨运兴, 孙晶, 李支新, 等. 二维光子晶体滤波器的研究[J]. 科技视界, 2020(4): 186-189.
[10]  傅海威, 赵辉, 乔学光, 等. 光子晶体微腔温度响应特性研究[J]. 光学学报, 2010, 30(1): 237-240.
[11]  Notomi, M. (2002) Negative Refraction in Photonic Crystals. Optical and Quantum Electronics, 34, 133-143.
https://doi.org/10.1023/a:1013300825612
[12]  Luo, C., Johnson, S.G., Joannopoulos, J.D. and Pendry, J.B. (2002) All-Angle Negative Refraction without Negative Effective Index. Physical Review B, 65, Article 201104.
https://doi.org/10.1103/physrevb.65.201104
[13]  Luo, C., Johnson, S.G., Joannopoulos, J.D. and Pendry, J.B. (2003) Subwavelength Imaging in Photonic Crystals. Physical Review B, 68, Article 045115.
https://doi.org/10.1103/physrevb.68.045115
[14]  Kasim, J., Ting, Y., Meng, Y.Y., Ping, L.J., See, A., Jong, L.L., et al. (2008) Near-field Raman Imaging Using Optically Trapped Dielectric Microsphere. Optics Express, 16, 7976-7984.
https://doi.org/10.1364/oe.16.007976
[15]  Chen, Z., Taflove, A. and Backman, V. (2004) Photonic Nanojet Enhancement of Backscattering of Light by Nanoparticles: A Potential Novel Visible-Light Ultramicroscopy Technique. Optics Express, 12, 1214-1220.
https://doi.org/10.1364/opex.12.001214
[16]  Lecler, S., Takakura, Y. and Meyrueis, P. (2005) Properties of a Three-Dimensional Photonic Jet. Optics Letters, 30, 2641-2643.
https://doi.org/10.1364/ol.30.002641
[17]  Lee, J.Y., Hong, B.H., Kim, W.Y., Min, S.K., Kim, Y., Jouravlev, M.V., et al. (2009) Near-Field Focusing and Magnification through Self-Assembled Nanoscale Spherical Lenses. Nature, 460, 498-501.
https://doi.org/10.1038/nature08173
[18]  Guo, H., Han, Y., Weng, X., Zhao, Y., Sui, G., Wang, Y., et al. (2013) Near-Field Focusing of the Dielectric Microsphere with Wavelength Scale Radius. Optics Express, 21, 2434-2443.
https://doi.org/10.1364/oe.21.002434
[19]  Kao, T.S., Rogers, E.T.F., Ou, J.Y. and Zheludev, N.I. (2012) “Digitally” Addressable Focusing of Light into a Subwavelength Hot Spot. Nano Letters, 12, 2728-2731.
https://doi.org/10.1021/nl2043437
[20]  Hao, X., Liu, X., Kuang, C., Li, Y., Ku, Y., Zhang, H., et al. (2013) Far-Field Super-Resolution Imaging Using Near-Field Illumination by Micro-Fiber. Applied Physics Letters, 102, Article 013104.
https://doi.org/10.1063/1.4773572
[21]  Liang, B., Huang, X. and Zheng, J. (2022) Super-Resolution Imaging of Negative-Refractive Graded-Index Photonic Crystal Flat Lens. Materials Research Express, 9, Article 016201.
https://doi.org/10.1088/2053-1591/ac4731
[22]  Lei, Y., Liang, B., Zhuang, S. and Wang, G. (2019) Subwavelength Focusing by Combining Negative-Refractive Photonic Crystal and Silicon Lens. Optical Materials Express, 9, 3962-3967.
https://doi.org/10.1364/ome.9.003962
[23]  陈子浩. 信息编码用高折射率光子晶体的构建及响应行为研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2022.
[24]  林晓鋆, 林德泉, 廖廷俤, 等. 光学微球腔的热光效应用于温度传感器研究[J]. 光子学报, 2020, 49(3): 31-40.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133