全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

全钒液流电池离子跨膜传输模拟研究
The Modeling Study of Ion Crossover in All-Vanadium Redox Flow Batteries

DOI: 10.12677/mos.2025.143230, PP. 369-378

Keywords: 建模研究,离子渗透,全钒液流电池,多物理场耦合
Modeling Study
, Ion Crossover, Vanadium Redox Flow Battery, Multiphysics Coupling

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究针对全钒氧化还原液流电池(VRFB)中钒离子的跨膜传输过程建立了二维瞬态数值模型,通过耦合Donnan界面效应分析了多物理场作用下离子的传输规律。验证结果显示,模型预测的开路电压和充放电曲线与实验数据误差小于3%。研究表明,Nafion膜界面处的H+浓度因膜内存在固定阴离子而显著升高,电势分布呈现Donnan突变特性。钒离子通量受电流方向与荷电状态(SOC)协同控制,高SOC时V2+VO2+扩散通量增强,低SOC时V3+VO2+受电场主导。充放电循环中钒离子净迁移呈现从负极向正极传输趋势,导致正极侧钒总浓度增加(40次循环后增加12.5%),造成正负极钒离子浓度失衡,成为容量衰减主因。该模型揭示了膜内多离子传输竞争机制,为优化膜材料设计与运行策略提供理论依据。
This study establishes a two-dimensional transient numerical model to investigate the transmembrane transport process of vanadium ions in vanadium redox flow batteries (VRFBs). By coupling the Donnan interfacial effect, the ion transport mechanisms under multi-physical fields are analyzed. Validation results demonstrate that the model-predicted open-circuit voltage and charge-discharge curves exhibit less than 3% error compared to experimental data. The study reveals that the H+ concentration at the Nafion membrane interface significantly increases due to the presence of fixed anions within the membrane, and the potential distribution exhibits Donnan discontinuity characteristics. The vanadium ion flux is jointly controlled by the current direction and the state of charge (SOC). At high SOC, the diffusion fluxes of V2+ and VO2+ are enhanced, while at low SOC, V3+ and VO2+ are predominantly influenced by the electric field. During charge-discharge cycles, the net migration of vanadium ions shows a trend of transport from the negative to the positive electrode, leading to an increase in the total vanadium concentration at the positive side (12.5% increase after 40 cycles). This results in an imbalance of vanadium ion concentrations between the electrodes, which is identified as the primary cause of capacity decay. The model elucidates the competitive mechanisms of multi-ion transport within the membrane, providing a theoretical foundation for optimizing membrane material design and operational strategies.

References

[1]  Loktionov, P., Pustovalova, A., Pichugov, R., Konev, D. and Antipov, A. (2024) Quantifying Effect of Faradaic Imbalance and Crossover on Capacity Fade of Vanadium Redox Flow Battery. Electrochimica Acta, 485, Article 144047.
https://doi.org/10.1016/j.electacta.2024.144047
[2]  Chen, Y., Bao, J., Xu, Z., Gao, P., Yan, L., Kim, S., et al. (2023) A Hybrid Analytical and Numerical Model for Cross-Over and Performance Decay in a Unit Cell Vanadium Redox Flow Battery. Journal of Power Sources, 578, Article 233210.
https://doi.org/10.1016/j.jpowsour.2023.233210
[3]  Skyllas-Kazacos, M. and Goh, L. (2012) Modeling of Vanadium Ion Diffusion across the Ion Exchange Membrane in the Vanadium Redox Battery. Journal of Membrane Science, 399, 43-48.
https://doi.org/10.1016/j.memsci.2012.01.024
[4]  Lei, Y., Zhang, B.W., Bai, B.F. and Zhao, T.S. (2015) A Transient Electrochemical Model Incorporating the Donnan Effect for All-Vanadium Redox Flow Batteries. Journal of Power Sources, 299, 202-211.
https://doi.org/10.1016/j.jpowsour.2015.08.100
[5]  Liu, L., Wang, C., He, Z., Das, R., Dong, B., Xie, X., et al. (2021) An Overview of Amphoteric Ion Exchange Membranes for Vanadium Redox Flow Batteries. Journal of Materials Science & Technology, 69, 212-227.
https://doi.org/10.1016/j.jmst.2020.08.032
[6]  Ye, J., Yuan, D., Ding, M., Long, Y., Long, T., Sun, L., et al. (2021) A Cost-Effective Nafion/Lignin Composite Membrane with Low Vanadium Ion Permeation for High Performance Vanadium Redox Flow Battery. Journal of Power Sources, 482, Article 229023.
https://doi.org/10.1016/j.jpowsour.2020.229023
[7]  Kim, D.K., Yoon, S.J. and Kim, S. (2020) Transport Phenomena Associated with Capacity Loss of All-Vanadium Redox Flow Battery. International Journal of Heat and Mass Transfer, 148, Article 119040.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119040
[8]  Zhou, J., Liu, Y., Zuo, P., Li, Y., Dong, Y., Wu, L., et al. (2021) Highly Conductive and Vanadium Sieving Microporous Tröger’s Base Membranes for Vanadium Redox Flow Battery. Journal of Membrane Science, 620, Article 118832.
https://doi.org/10.1016/j.memsci.2020.118832
[9]  Wang, T., Jeon, J.Y., Han, J., Kim, J.H., Bae, C. and Kim, S. (2020) Poly(Terphenylene) Anion Exchange Membranes with High Conductivity and Low Vanadium Permeability for Vanadium Redox Flow Batteries (VRFBs). Journal of Membrane Science, 598, Article 117665.
https://doi.org/10.1016/j.memsci.2019.117665
[10]  Luo, Q., Li, L., Nie, Z., Wang, W., Wei, X., Li, B., et al. (2012) In-Situ Investigation of Vanadium Ion Transport in Redox Flow Battery. Journal of Power Sources, 218, 15-20.
https://doi.org/10.1016/j.jpowsour.2012.06.066
[11]  Sing, D.C. and Meyers, J.P. (2013) Direct Measurement of Vanadium Crossover in an Operating Vanadium Redox Flow Battery. ECS Transactions, 50, 61-72.
https://doi.org/10.1149/05045.0061ecst
[12]  Tang, A., Bao, J. and Skyllas-Kazacos, M. (2011) Dynamic Modelling of the Effects of Ion Diffusion and Side Reactions on the Capacity Loss for Vanadium Redox Flow Battery. Journal of Power Sources, 196, 10737-10747.
https://doi.org/10.1016/j.jpowsour.2011.09.003
[13]  He, Q., Li, Z., Zhao, D., Yu, J., Tan, P., Guo, M., et al. (2023) A 3D Modelling Study on All Vanadium Redox Flow Battery at Various Operating Temperatures. Energy, 282, Article 128934.
https://doi.org/10.1016/j.energy.2023.128934
[14]  Badrinarayanan, R., Zhao, J., Tseng, K.J. and Skyllas-Kazacos, M. (2014) Extended Dynamic Model for Ion Diffusion in All-Vanadium Redox Flow Battery Including the Effects of Temperature and Bulk Electrolyte Transfer. Journal of Power Sources, 270, 576-586.
https://doi.org/10.1016/j.jpowsour.2014.07.128
[15]  Rao, P. and Jayanti, S. (2023) Physics-Based Electrochemical Model of Vanadium Redox Flow Battery for Low-Temperature Applications. Batteries, 9, Article 374.
[16]  Knehr, K.W., Agar, E., Dennison, C.R., Kalidindi, A.R. and Kumbur, E.C. (2012) A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane. Journal of the Electrochemical Society, 159, A1446-A1459.
https://doi.org/10.1149/2.017209jes
[17]  Boettcher, P.A., Agar, E., Dennison, C.R. and Kumbur, E.C. (2015) Modeling of Ion Crossover in Vanadium Redox Flow Batteries: A Computationally-Efficient Lumped Parameter Approach for Extended Cycling. Journal of the Electrochemical Society, 163, A5244-A5252.
https://doi.org/10.1149/2.0311601jes
[18]  Yang, X., Ye, Q., Cheng, P. and Zhao, T.S. (2015) Effects of the Electric Field on Ion Crossover in Vanadium Redox Flow Batteries. Applied Energy, 145, 306-319.
https://doi.org/10.1016/j.apenergy.2015.02.038
[19]  Wandschneider, F.T., Finke, D., Grosjean, S., Fischer, P., Pinkwart, K., Tübke, J., et al. (2014) Model of a Vanadium Redox Flow Battery with an Anion Exchange Membrane and a Larminie-Correction. Journal of Power Sources, 272, 436-447.
https://doi.org/10.1016/j.jpowsour.2014.08.082
[20]  Brahma, K., Nayak, R., Verma, S.K. and Sonika, (2024) Recent Advances in Development and Application of Polymer Nanocomposite Ion Exchange Membrane for High Performance Vanadium Redox Flow Battery. Journal of Energy Storage, 97, Article 112850.
https://doi.org/10.1016/j.est.2024.112850
[21]  Lawton, J.S., Jones, A. and Zawodzinski, T. (2013) Concentration Dependence of VO2+ Crossover of Nation for Vanadium Redox Flow Batteries. Journal of the Electrochemical Society, 160, A697-A702.
https://doi.org/10.1149/2.004306jes
[22]  Sreenath, S., P S, N., Krebsz, M., Andrews, J. and Nagarale, R.K. (2024) Ion Exchange Membranes: Latest Developments toward High-Performance Vanadium Redox Flow Batteries. ACS Applied Energy Materials, 7, 10846-10876.
https://doi.org/10.1021/acsaem.4c01714
[23]  Ashraf Gandomi, Y., Aaron, D.S. and Mench, M.M. (2016) Coupled Membrane Transport Parameters for Ionic Species in All-Vanadium Redox Flow Batteries. Electrochimica Acta, 218, 174-190.
https://doi.org/10.1016/j.electacta.2016.09.087

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133