|
基于注意力组合模型的风速预测
|
Abstract:
鉴于风速具有非线性、非稳定性和高度随机性等特点,本文提出了CEEMDAN-CNN-Transformer混合模型,旨在提高风速预测的准确性。模型结合CEEMDAN算法对风速序列进行多尺度分解,降低噪声并提取多尺度特征,将复杂的非线性序列转化为更易于建模的子序列;再利用CNN网络提取特征分量的局部时空特征,捕捉风速序列的关键模式;最后通过Transformer模型的自注意力机制捕获序列间的长期依赖关系,得到最终预测风速。实验结果表明,该模型在预测精度上优于传统深度学习模型,有效提升了风速预测的准确性,展现了多模态深度学习架构在处理风速数据非平稳性和高波动性方面的优势。
Considering the characteristics of wind speed, such as nonlinearity, instability, and high randomness, this paper proposes a CEEMDAN-CNN-Transformer hybrid model aimed at enhancing the accuracy of wind speed forecasting. The model employs the CEEMDAN algorithm to perform multi-scale decomposition on wind speed sequences, reducing noise and extracting multi-scale features, thereby transforming complex nonlinear sequences into more easily modeled sub-sequences. Subsequently, a CNN network is utilized to extract the local spatiotemporal features of the feature components, capturing key patterns in wind speed sequences. Finally, the self-attention mechanism of the Transformer model is employed to capture long-term dependencies between sequences, yielding the final predicted wind speed. Experimental results demonstrate that the model outperforms traditional deep learning models in terms of forecasting accuracy, effectively improving the precision of wind speed prediction and showcasing the advantages of multi-modal deep learning architectures in dealing with the non-stationarity and high volatility of wind speed data.
[1] | 刘吉臻, 马利飞, 王庆华, 等. 海上风电支撑我国能源转型发展的思考[J]. 中国工程科学, 2021, 23(1): 149-159. |
[2] | 赵靓. 2022-2031年全球海上风电市场展望[J]. 风能, 2022(7): 46-51. |
[3] | 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3771. |
[4] | 戚创创, 王向文. 考虑风向和大气稳定度的海上风电功率短期预测[J]. 电网技术, 2021, 45(7): 2773-2780. |
[5] | Liu, H., Mi, X. and Li, Y. (2018) Smart Multi-Step Deep Learning Model for Wind Speed Forecasting Based on Variational Mode Decomposition, Singular Spectrum Analysis, LSTM Network and Elm. Energy Conversion and Management, 159, 54-64. https://doi.org/10.1016/j.enconman.2018.01.010 |
[6] | 钱政, 裴岩, 曹利宵, 等. 风电功率预测方法综述[J]. 高电压技术, 2016, 42(4): 1047-1060. |
[7] | Wang, J., Li, X., Zhou, X., et al. (2020) Ultra-Short-Term Wind Speed Prediction Based on VMD-LSTM. Power System Protection and Control, 48, 45-52. |
[8] | Peng, T., Zhou, J., Zhang, C. and Zheng, Y. (2017) Multi-Step Ahead Wind Speed Forecasting Using a Hybrid Model Based on Two-Stage Decomposition Technique and Adaboost-Extreme Learning Machine. Energy Conversion and Management, 153, 589-602. https://doi.org/10.1016/j.enconman.2017.10.021 |
[9] | 王贺, 陈蕻峰, 熊敏, 等. 融合CEEMDAN和ICS-LSTM的短期风速预测建模[J]. 电子测量与仪器学报, 2022, 36(4): 17-23. |
[10] | 杨芮, 徐虹, 文武. 基于EEMD-GRU网络模型的短期风速预测[J]. 计算机系统应用, 2022, 31(6): 231-237. |