全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有状态切换和跳跃的随机捕食–食饵模型的种群动态行为
Population Dynamical Behaviors of Stochastic Predator-Prey Models with Regime Switching and Jumps

DOI: 10.12677/aam.2025.143128, PP. 409-421

Keywords: 捕食者–食饵模型,机制转换,Lévy跳跃,阈值,白噪声
Predator-Prey Models
, Regime Switching, Lévy Jumps, Threshold, White Noise

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了一个具有Lévy跳跃噪声和马尔科夫切换的随机捕食者–食饵模型。与现有方法不同,本文引入了更精确的阈值用于分析捕食者与食饵种群的随机持久性和灭绝性,从而得出了有关物种存在性的充分且几乎必要条件。值得注意的是本文提出的阈值在理论证明下只取决于系统中的已知参数。最后,本文进行数值模拟,论证相关理论结果。
In this paper, we study a stochastic predator-prey model with Lévy jump noise and Markov switching. Differently from the existing methods, more accurate thresholds are introduced for the analysis of the stochastic permanence and extinction of the population, which yields some sufficient and almost necessary conditions. It is worth noting that the thresholds proposed in this paper depend only on the known parameters in the system under the theoretical proof. Finally, the paper performs numerical simulations to demonstrate the relevant theoretical results.

References

[1]  Settati, A. and Lahrouz, A. (2014) Stationary Distribution of Stochastic Population Systems under Regime Switching. Applied Mathematics and Computation, 244, 235-243.
https://doi.org/10.1016/j.amc.2014.07.012
[2]  Li, X., Gray, A., Jiang, D. and Mao, X. (2011) Sufficient and Necessary Conditions of Stochastic Permanence and Extinction for Stochastic Logistic Populations under Regime Switching. Journal of Mathematical Analysis and Applications, 376, 11-28.
https://doi.org/10.1016/j.jmaa.2010.10.053
[3]  Liu, Q., Jiang, D., Hayat, T. and Alsaedi, A. (2019) Dynamical Behavior of a Hybrid Switching SIS Epidemic Model with Vaccination and Lévy Jumps. Stochastic Analysis and Applications, 37, 388-411.
https://doi.org/10.1080/07362994.2019.1575236
[4]  Zhou, Y., Yuan, S. and Zhao, D. (2016) Threshold Behavior of a Stochastic SIS Model Lévy Jumps. Applied Mathematics and Computation, 275, 255-267.
https://doi.org/10.1016/j.amc.2015.11.077
[5]  Li, S. and Guo, S. (2021) Persistence and Extinction of a Stochastic SIS Epidemic Model with Regime Switching and Lévy Jumps. Discrete & Continuous Dynamical Systems B, 26, 5101-5134.
https://doi.org/10.3934/dcdsb.2020335
[6]  Li, S. and Guo, S. (2021) Permanence of a Stochastic Prey-Predator Model with a General Functional Response. Mathematics and Computers in Simulation, 187, 308-336.
https://doi.org/10.1016/j.matcom.2021.02.025
[7]  Bao, J., Mao, X., Yin, G. and Yuan, C. (2011) Competitive Lotka-Volterra Population Dynamics with Jumps. Nonlinear Analysis: Theory, Methods & Applications, 74, 6601-6616.
https://doi.org/10.1016/j.na.2011.06.043
[8]  Zu, L., Jiang, D., O’Regan, D., Hayat, T. and Ahmad, B. (2018) Ergodic Property of a Lotka-Volterra Predator-Prey Model with White Noise Higher Order Perturbation under Regime Switching. Applied Mathematics and Computation, 330, 93-102.
https://doi.org/10.1016/j.amc.2018.02.035
[9]  Shao, Y. and Zhao, J. (2024) Dynamics of a Stochastic Delayed Predator-Prey System with Regime Switching and Jumps. Research in the Mathematical Sciences, 11, 1-22.
https://doi.org/10.1007/s40687-024-00480-9
[10]  Zhu, Y., Wang, L. and Qiu, Z. (2022) Threshold Behaviour of a Stochastic SIRS Lévy Jump Model with Saturated Incidence and Vaccination. Mathematical Biosciences and Engineering, 20, 1402-1419.
https://doi.org/10.3934/mbe.2023063
[11]  Nguyen, D.H. and Yin, G. (2017) Coexistence and Exclusion of Stochastic Competitive Lotka-Volterra Models. Journal of Differential Equations, 262, 1192-1225.
https://doi.org/10.1016/j.jde.2016.10.005
[12]  Zhu, C. and Yin, G. (2008) On Hybrid Diffusions. 2008 47th IEEE Conference on Decision and Control, Cancun 9-11 December 2008, 1507-1512.
https://doi.org/10.1109/cdc.2008.4739497
[13]  Skorokhod, A.V. (1989) Asymptotic Methods in the Theory of Stochastic Differential Equations. American Mathematical Society.
[14]  Jiang, D., Shi, N. and Li, X. (2008) Global Stability and Stochastic Permanence of a Non-Autonomous Logistic Equation with Random Perturbation. Journal of Mathematical Analysis and Applications, 340, 588-597.
https://doi.org/10.1016/j.jmaa.2007.08.014
[15]  Haque, M. (2008) Ratio-Dependent Predator-Prey Models of Interacting Populations. Bulletin of Mathematical Biology, 71, 430-452.
https://doi.org/10.1007/s11538-008-9368-4
[16]  Ji, C. and Jiang, D. (2011) Dynamics of a Stochastic Density Dependent Predator-Prey System with Beddington-Deangelis Functional Response. Journal of Mathematical Analysis and Applications, 381, 441-453.
https://doi.org/10.1016/j.jmaa.2011.02.037.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133