|
贵阳机场两次辐射雾天气过程对比分析
|
Abstract:
利用机场地面自动观测数据和高空资料、贵阳站探空资料和ECMWF ERA5再分析资料等,对贵阳龙洞堡机场2016年4月3日(过程一)和2023年12月8日(过程二)两次大雾天气过程从大尺度环流背景、物理量条件以及地面气象要素的变化特征进行分析。结果表明:两次大雾天气过程生成于水汽充沛、微风、强辐射降温的晴间,高空以弱脊西北气流控制为主,地面风向不稳定且风速维持在2 m/s以下。大气层结处于静态稳定时,天空云量覆盖率越低,地表辐射降温越强,逆温层越明显,造成的主导能见度下降率越大,低能见度持续时间越长。太阳辐射使得大气温度上升,地面风速增大后,雾层结构被迅速破坏,雾气快速消散,主导能见度及跑道视程快速抬升。
Using the airport surface automatic observation data and high altitude data, Guiyang station radiosonde data and ECMWF ERA5 reanalysis data, etc., two foggy weather processes of Guiyang Longdongbao Airport on April 3, 2016 (Process 1) and December 8, 2023 (Process 2) were analyzed from the characteristics of large-scale circulation background, physical quantity conditions and surface meteorological elements. The results show that the two foggy weather processes are generated on sunny days with abundant water vapor, light breeze and strong radiation cooling. The northwest air flow is mainly controlled by the weak ridge in the upper air, and the surface wind direction is unstable and the wind speed is maintained below 2 m/s. When the atmospheric junction is in static stability, the lower the sky cloud coverage, the stronger the surface radiation cooling, the more obvious the inversion layer, the greater the dominant visibility decline rate and the longer the duration of low visibility. After the solar radiation increases the atmospheric temperature and the surface wind speed, the fog layer structure is rapidly destroyed, the fog quickly dissipates, and the dominant visibility and the runway visual range are rapidly raised.
[1] | 刘小宁, 张洪政, 李庆祥, 等. 我国大雾的气候特征及变化初步解释[J]. 应用气象学报, 2005(2): 220-230+271. |
[2] | 邵振平. 郑州机场能见度变化特征及雾的成因分析[J]. 气象与环境科学, 2014, 37(1): 75-82. |
[3] | 李秀连, 陈克军, 王科, 等. 首都机场大雾的分类特征和统计分析[J]. 气象科技, 2008, 36(6): 717-723. |
[4] | 喻晗, 李云. 2016年11月贵阳机场一次锋面雾天气过程分析[J]. 科学技术创新, 2018(4): 21-24. |
[5] | 马翠平, 吴彬贵, 李江波, 等. 一次持续性大雾边界层结构特征及诊断分析[J]. 气象, 2014, 40(6): 715-722. |
[6] | 李子华, 黄建平, 孙博阳, 等. 辐射雾发展的爆发性特征[J]. 大气科学, 1999(5): 623-631. |
[7] | 曹伟华, 梁旭东, 李青春. 北京一次持续性雾霾过程的阶段性特征及影响因子分析[J]. 气象学报, 2013, 71(5): 940-951. |
[8] | 周斌斌. 辐射雾的数值模拟[J]. 气象学报, 1987(1): 21-29. |
[9] | 刘贵萍, 李跃春. T639和WAFS产品对贵阳机场辐射雾预报能力的对比分析[J]. 贵州气象, 2011, 35(6): 14-17. |