|
蒙药朝伦雄胡-5对癫痫持续状态大鼠模型中VEGF表达影响的研究
|
Abstract:
目的:通过氯化锂–毛果芸香碱建立大鼠癫痫持续状态模型,探究癫痫持续状态大鼠模型中不同时间点VEGF的表达变化,并探讨蒙药朝伦雄胡-5对VEGF表达的影响。方法:第一部分:选取90只6~8周龄健康雄性SD大鼠,随机分为造模成功组、给药对照组和生理盐水对照组,每组30只。造模成功组与给药对照组通过腹腔注射氯化锂–毛果芸香碱制作大鼠癫痫持续状态模型,生理盐水对照组给予同等剂量的生理盐水处理,造模完成后应用qRT-PCR和Western blot方法检测VEGF转录水平及蛋白水平的表达情况。第二部分:选取40只6~8周龄健康雄性SD大鼠,随机分为蒙药组和对照组。制作癫痫大鼠模型前3 d,蒙药组给予蒙药朝伦雄胡-5灌胃处理,对照组给予同等剂量的生理盐水灌胃,3 d后对蒙药组和对照组通过腹腔注射氯化锂–毛果芸香碱制作大鼠癫痫持续状态模型。造模完成后应用qRT-PCR和Western blot方法检测VEGF转录水平及蛋白水平的表达情况。结果:第一部分:造模成功组VEGF mRNA表达较给药对照组和生理盐水对照组相比显著升高(P < 0.05);给药对照组与生理盐水对照组VEGF mRNA表达水平无明显差异。且造模成功组VEGF mRNA随着时间的增长而逐渐升高,给药对照组、生理盐水对照组VEGF mRNA不随时间而变化。造模成功组较另外2组相比,VEGF蛋白表达水平显著增高(P < 0.05);给药对照组与生理盐水对照组VEGF蛋白表达水平无明显差异。而且3组的VEGF蛋白变化均无明显的时间依赖性。第二部分:蒙药组VEGF mRNA与对照组相比,表达显著降低(P < 0.05),并且随着时间的增长,VEGF不断降低;蒙药组较造模成功组VEGF蛋白表达显著降低(P < 0.05),但并不存在时间依赖性。结论:1) 在氯化锂–毛果芸香碱诱导的癫痫持续状态大鼠海马中的VEGF mRNA的表达是升高的。2) 在氯化锂–毛果芸香碱诱导的癫痫持续状态大鼠海马中的VEGF蛋白的表达是升高的。3) 蒙药朝伦雄胡-5可诱导癫痫持续状态大鼠海马中的VEGF mRNA表达下降,并且随着时间的增长而不断降低。4) 蒙药朝伦雄胡-5在癫痫持续状态模型中从蛋白水平上可部分抑制VEGF表达升高。
Objective: To explore the changes in VEGF expression at different time points in the rat model of status epilepticus by lithium chloride-rutin and explore the effect of Mongolian medicine Zhaolun Xionghu-5 on VEGF expression. Methods: Part I: 90 healthy male rats aged 6~8 weeks were randomly divided into successful modeling group, drug administration control group and normal saline control group, with 30 rats in each group. The rats in the successful modeling group and the control group were intraperitoneally injected with lithium chloride-rutin to establish the rat model of status epilepticus. The rats in the normal saline control group were treated with the same dose of normal saline. After the modeling, qRT-PCR and Western blot were used to detect the expression of VEGF transcription and protein levels. Part II: 40 healthy male rats aged 6~8 weeks were randomly divided into Mongolian medicine group and control group. Three days before the establishment of the rat model of status epilepticus, the Mongolian medicine group was given Mongolian medicine Zholun Xionghu-5 by gavage, and the control group was given the same dose of normal saline by gavage. Three days later, the Mongolian medicine group and the control group were intraperitoneally injected with lithium chloride-rutin to establish the rat model of status epilepticus. After the modeling, qRT-PCR and Western blot were used to detect
[1] | Han, W., Song, X., He, R., Li, T., Cheng, L., Xie, L., et al. (2017) VEGF Regulates Hippocampal Neurogenesis and Reverses Cognitive Deficits in Immature Rats after Status Epilepticus through the VEGF R2 Signaling Pathway. Epilepsy & Behavior, 68, 159-167. https://doi.org/10.1016/j.yebeh.2016.12.007 |
[2] | Iyer, S. and Acharya, K.R. (2011) Tying the Knot: The Cystine Signature and Molecular‐Recognition Processes of the Vascular Endothelial Growth Factor Family of Angiogenic Cytokines. The FEBS Journal, 278, 4304-4322. https://doi.org/10.1111/j.1742-4658.2011.08350.x |
[3] | Wittko-Schneider, I.M., Schneider, F.T. and Plate, K.H. (2013) Brain Homeostasis: VEGF Receptor 1 and 2—Two Unequal Brothers in Mind. Cellular and Molecular Life Sciences, 70, 1705-1725. https://doi.org/10.1007/s00018-013-1279-3 |
[4] | Greenberg, D.A. and Jin, K. (2013) Vascular Endothelial Growth Factors (VEGFs) and Stroke. Cellular and Molecular Life Sciences, 70, 1753-1761. https://doi.org/10.1007/s00018-013-1282-8 |
[5] | Claesson‐Welsh, L. and Welsh, M. (2013) VEGFA and Tumour Angiogenesis. Journal of Internal Medicine, 273, 114-127. https://doi.org/10.1111/joim.12019 |
[6] | Masi, A., Breen, E.J., Alvares, G.A., Glozier, N., Hickie, I.B., Hunt, A., et al. (2017) Cytokine Levels and Associations with Symptom Severity in Male and Female Children with Autism Spectrum Disorder. Molecular Autism, 8, Article No. 63. https://doi.org/10.1186/s13229-017-0176-2 |
[7] | Belagodu, A.P., Fleming, S. and Galvez, R. (2017) Neocortical Developmental Analysis of Vasculature and Their Growth Factors Offer New Insight into Fragile X Syndrome Abnormalities. Developmental Neurobiology, 77, 1321-1333. https://doi.org/10.1002/dneu.22514 |
[8] | Moore, A.M., Mahoney, E., Dumitrescu, L., De Jager, P.L., Koran, M.E.I., Petyuk, V.A., et al. (2020) APOE Ε4-Specific Associations of VEGF Gene Family Expression with Cognitive Aging and Alzheimer’s Disease. Neurobiology of Aging, 87, 18-25. https://doi.org/10.1016/j.neurobiolaging.2019.10.021 |
[9] | 昭乌达蒙医院进修班, 编. 蒙医药方汇编[M]. 赤峰: 内蒙古科学技术出版社, 2004. |
[10] | 额日和木其其格. 原代大鼠海马神经元中Sema3F对VEGF mRNA及蛋白表达的影响[D]: [硕士学位论文]. 呼和浩特: 内蒙古医科大学, 2019. |
[11] | 赵晶晶. 原代大鼠海马神经元中Sema3F与CREB在基因和转录水平的相关性[D]: [硕士学位论文]. 呼和浩特: 内蒙古医科大学, 2021. |
[12] | 陈睿, 薛国芳. 难治性癫痫动物模型的研究进展[J]. 癫痫杂志, 2021, 7(5): 431-435. |
[13] | Park, K., Amano, H., Ito, Y., Kashiwagi, S., Yamazaki, Y., Takeda, A., et al. (2016) Vascular Endothelial Growth Factor Receptor-1 (VEGFR-1) Signaling Enhances Angiogenesis in a Surgical Sponge Model. Biomedicine & Pharmacotherapy, 78, 140-149. https://doi.org/10.1016/j.biopha.2016.01.005 |
[14] | Holopainen, I.E. (2008) Seizures in the Developing Brain: Cellular and Molecular Mechanisms of Neuronal Damage, Neurogenesis and Cellular Reorganization. Neurochemistry International, 52, 935-947. https://doi.org/10.1016/j.neuint.2007.10.021 |
[15] | Ben-Ari, Y. and Holmes, G.L. (2006) Effects of Seizures on Developmental Processes in the Immature Brain. The Lancet Neurology, 5, 1055-1063. https://doi.org/10.1016/s1474-4422(06)70626-3 |
[16] | Dienstmann, R., Rodon, J., Serra, V. and Tabernero, J. (2014) Picking the Point of Inhibition: A Comparative Review of Pi3k/AKT/mTOR Pathway Inhibitors. Molecular Cancer Therapeutics, 13, 1021-1031. https://doi.org/10.1158/1535-7163.mct-13-0639 |
[17] | Abe, E., Fujiki, M., Nagai, Y., Shiqi, K., Kubo, T., Ishii, K., et al. (2010) The Phosphatidylinositol-3 Kinase/AKT Pathway Mediates Geranylgeranylacetone-Induced Neuroprotection against Cerebral Infarction in Rats. Brain Research, 1330, 151-157. https://doi.org/10.1016/j.brainres.2010.02.074 |
[18] | Rigau, V., Morin, M., Rousset, M.-., de Bock, F., Lebrun, A., Coubes, P., et al. (2007) Angiogenesis Is Associated with Blood-Brain Barrier Permeability in Temporal Lobe Epilepsy. Brain, 130, 1942-1956. https://doi.org/10.1093/brain/awm118 |
[19] | Jiang, S., Xia, R., Jiang, Y., Wang, L. and Gao, F. (2014) Vascular Endothelial Growth Factors Enhance the Permeability of the Mouse Blood-Brain Barrier. PLOS ONE, 9, e86407. https://doi.org/10.1371/journal.pone.0086407 |
[20] | Lenzer-Fanara, J.R., Li, T., Salerni, E.A., Payen, F. and Croll, S.D. (2017) VEGF Treatment during Status Epilepticus Attenuates Long-Term Seizure-Associated Alterations in Astrocyte Morphology. Epilepsy & Behavior, 70, 33-44. https://doi.org/10.1016/j.yebeh.2017.02.019 |
[21] | Zhu, L., Dai, S., Lu, D., Xu, P., Chen, L., Han, Y., et al. (2020) Role of NDEL1 and VEGF/VEGFR-2 in Mouse Hippocampus after Status Epilepticus. ASN Neuro, 12, Article 1759091420926836. https://doi.org/10.1177/1759091420926836 |
[22] | Zhang, Z.G., Zhang, L., Jiang, Q., Zhang, R., Davies, K., Powers, C., et al. (2000) VEGF Enhances Angiogenesis and Promotes Blood-Brain Barrier Leakage in the Ischemic Brain. Journal of Clinical Investigation, 106, 829-838. https://doi.org/10.1172/jci9369 |
[23] | Lange, C., Storkebaum, E., de Almodóvar, C.R., Dewerchin, M. and Carmeliet, P. (2016) Vascular Endothelial Growth Factor: A Neurovascular Target in Neurological Diseases. Nature Reviews Neurology, 12, 439-454. https://doi.org/10.1038/nrneurol.2016.88 |
[24] | Han, W., Song, X., He, R., Li, T., Cheng, L., Xie, L., et al. (2017) VEGF Regulates Hippocampal Neurogenesis and Reverses Cognitive Deficits in Immature Rats after Status Epilepticus through the VEGF R2 Signaling Pathway. Epilepsy & Behavior, 68, 159-167. https://doi.org/10.1016/j.yebeh.2016.12.007 |
[25] | McCloskey, D.P., Croll, S.D. and Scharfman, H.E. (2005) Depression of Synaptic Transmission by Vascular Endothelial Growth Factor in Adult Rat Hippocampus and Evidence for Increased Efficacy after Chronic Seizures. The Journal of Neuroscience, 25, 8889-8897. https://doi.org/10.1523/jneurosci.2577-05.2005 |