全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于肿瘤微环境基因的肺腺癌相关研究
Lung Adenocarcinoma Association Studies Based on Tumor Microenvironment Genes

DOI: 10.12677/acm.2025.153879, PP. 2425-2437

Keywords: 肺腺癌,非负矩阵分解,肿瘤微环境,基因,预后
Lung Adenocarcinoma
, Nonnegative Matrix Factorization, Tumor Microenvironment, Gene, Prognosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:肿瘤微环境(TME)在各种癌症的发生发展中起着关键作用,本研究旨在探讨肺腺癌(LUAD)中TME相关基因的作用。方法:研究数据来源于TCGA及GEO数据库。首先提取出TME相关的差异表达基因(DEGs),然后采用非负矩阵分解(NMF)聚类方法识别不同亚型。通过单因素Cox回归分析和Lasso回归分析筛选具有预后意义的基因,构建预后模型。最后,采用受试者工作特征曲线(ROC)和决策曲线分析(DCA)对模型进行验证。结果:高危组患者的生存时间明显更短。单因素和多因素Cox回归分析证实,风险评分是影响LUAD患者预后的独立危险因素。模型的预测稳定性不受年龄及性别的影响,且能反映TME相关免疫特征。结论:我们构建的包含5个TME相关基因的预后模型的预测性能较为稳定、准确,未来可能为肺癌的个体化治疗提供新的方向和依据。
Objective: Tumor microenvironment (TME) plays a key role in the occurrence and development of various cancers. This study aims to investigate the role of TME-related genes in LUAD (lung adenocarcinoma). Methods: The study data were obtained from the TCGA and GEO databases. DEGs (differentially expressed genes) related to TME were first extracted. Then, NMF (nonnegative matrix factorization) clustering was applied to identify different subtypes. Univariate Cox regression analysis and Lasso regression analysis were performed to screen genes with prognostic significance to construct the prognostic characteristics. Finally, ROC (receiver operating characteristic) curve and DCA (decision curve analysis) were used to verify the MODEL. Results: Patients in the high-risk group had a significantly shorter survival time. Univariate analysis and multivariate Cox regression analysis confirmed that the risk score was an independent risk factor for the outcome of LUAD patients. The prediction stability of the model was not affected by age and sex and could reflect TME-related immune characteristics. Conclusion: We constructed a prognostic model containing five TME-related genes, and the prediction performance of the model was relatively stable and accurate, which might provide a new direction and basis for the individualized treatment of lung cancer in the future.

References

[1]  Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2]  Chen, Z., Fillmore, C.M., Hammerman, P.S., Kim, C.F. and Wong, K. (2014) Non-Small-Cell Lung Cancers: A Heterogeneous Set of Diseases. Nature Reviews Cancer, 14, 535-546.
https://doi.org/10.1038/nrc3775
[3]  Ribas, A. and Wolchok, J.D. (2018) Cancer Immunotherapy Using Checkpoint Blockade. Science, 359, 1350-1355.
https://doi.org/10.1126/science.aar4060
[4]  Mahoney, K.M., Rennert, P.D. and Freeman, G.J. (2015) Combination Cancer Immunotherapy and New Immunomodulatory Targets. Nature Reviews Drug Discovery, 14, 561-584.
https://doi.org/10.1038/nrd4591
[5]  Wood, S.L., Pernemalm, M., Crosbie, P.A. and Whetton, A.D. (2014) The Role of the Tumor-Microenvironment in Lung Cancer-Metastasis and Its Relationship to Potential Therapeutic Targets. Cancer Treatment Reviews, 40, 558-566.
https://doi.org/10.1016/j.ctrv.2013.10.001
[6]  Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., et al. (2015) Robust Enumeration of Cell Subsets from Tissue Expression Profiles. Nature Methods, 12, 453-457.
https://doi.org/10.1038/nmeth.3337
[7]  Rooney, M.S., Shukla, S.A., Wu, C.J., Getz, G. and Hacohen, N. (2015) Molecular and Genetic Properties of Tumors Associated with Local Immune Cytolytic Activity. Cell, 160, 48-61.
https://doi.org/10.1016/j.cell.2014.12.033
[8]  Becht, E., Giraldo, N.A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., et al. (2016) Estimating the Population Abundance of Tissue-Infiltrating Immune and Stromal Cell Populations Using Gene Expression. Genome Biology, 17, Article No. 218.
https://doi.org/10.1186/s13059-016-1070-5
[9]  Chifman, J., Pullikuth, A., Chou, J.W., Bedognetti, D. and Miller, L.D. (2016) Conservation of Immune Gene Signatures in Solid Tumors and Prognostic Implications. BMC Cancer, 16, Article No. 911.
https://doi.org/10.1186/s12885-016-2948-z
[10]  Li, B., Severson, E., Pignon, J., Zhao, H., Li, T., Novak, J., et al. (2016) Comprehensive Analyses of Tumor Immunity: Implications for Cancer Immunotherapy. Genome Biology, 17, Article No. 174.
https://doi.org/10.1186/s13059-016-1028-7
[11]  Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., Treacy, D., Trombetta, J.J., et al. (2016) Dissecting the Multicellular Ecosystem of Metastatic Melanoma by Single-Cell RNA-Seq. Science, 352, 189-196.
https://doi.org/10.1126/science.aad0501
[12]  Aran, D., Hu, Z. and Butte, A.J. (2017) xCell: Digitally Portraying the Tissue Cellular Heterogeneity Landscape. Genome Biology, 18, Article No. 220.
https://doi.org/10.1186/s13059-017-1349-1
[13]  Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015) Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Research, 43, e47.
https://doi.org/10.1093/nar/gkv007
[14]  Gaujoux, R. and Seoighe, C. (2010) A Flexible R Package for Nonnegative Matrix Factorization. BMC Bioinformatics, 11, Article No. 367.
https://doi.org/10.1186/1471-2105-11-367
[15]  Thorsson, V., Gibbs, D.L., Brown, S.D., Wolf, D., Bortone, D.S., Ou Yang, T., et al. (2018) The Immune Landscape of Cancer. Immunity, 48, 812-830.e14.
https://doi.org/10.1016/j.immuni.2018.03.023
[16]  Feng, H., Zhao, Y., Yan, W., Wei, X., Lin, J., Jiang, P., et al. (2022) Identification of Signature Genes and Characterizations of Tumor Immune Microenvironment and Tumor Purity in Lung Adenocarcinoma Based on Machine Learning. Frontiers in Medicine, 9, Article 843749.
https://doi.org/10.3389/fmed.2022.843749
[17]  Chen, S., Duan, Y., Wu, Y., Yang, D. and An, J. (2021) A Novel Integrated Metabolism-Immunity Gene Expression Model Predicts the Prognosis of Lung Adenocarcinoma Patients. Frontiers in Pharmacology, 12, Article 728368.
https://doi.org/10.3389/fphar.2021.728368
[18]  Wu, W., Jia, L., Zhang, Y., Zhao, J., Dong, Y. and Qiang, Y. (2021) Exploration of the Prognostic Signature Reflecting Tumor Microenvironment of Lung Adenocarcinoma Based on Immunologically Relevant Genes. Bioengineered, 12, 7417-7431.
https://doi.org/10.1080/21655979.2021.1974779
[19]  Peng, Y., Xiong, L., Zhou, Z., Ning, K., Li, Z., Wu, Z., et al. (2022) Single-Cell Transcriptomics Reveals a Low CD8+ T Cell Infiltrating State Mediated by Fibroblasts in Recurrent Renal Cell Carcinoma. Journal for ImmunoTherapy of Cancer, 10, e004206.
https://doi.org/10.1136/jitc-2021-004206
[20]  Ged, Y. and Voss, M.H. (2021) Novel Emerging Biomarkers to Immunotherapy in Kidney Cancer. Therapeutic Advances in Medical Oncology, 13, 1-13.
[21]  Vitale, I., Manic, G., Coussens, L.M., Kroemer, G. and Galluzzi, L. (2019) Macrophages and Metabolism in the Tumor Microenvironment. Cell Metabolism, 30, 36-50.
https://doi.org/10.1016/j.cmet.2019.06.001
[22]  Pitt, J.M., Marabelle, A., Eggermont, A., Soria, J.-., Kroemer, G. and Zitvogel, L. (2016) Targeting the Tumor Microenvironment: Removing Obstruction to Anticancer Immune Responses and Immunotherapy. Annals of Oncology, 27, 1482-1492.
https://doi.org/10.1093/annonc/mdw168
[23]  Li, X., Wenes, M., Romero, P., Huang, S.C., Fendt, S. and Ho, P. (2019) Navigating Metabolic Pathways to Enhance Antitumour Immunity and Immunotherapy. Nature Reviews Clinical Oncology, 16, 425-441.
https://doi.org/10.1038/s41571-019-0203-7
[24]  Junttila, M.R. and de Sauvage, F.J. (2013) Influence of Tumour Micro-Environment Heterogeneity on Therapeutic Response. Nature, 501, 346-354.
https://doi.org/10.1038/nature12626
[25]  Aran, D., Sirota, M. and Butte, A.J. (2015) Systematic Pan-Cancer Analysis of Tumour Purity. Nature Communications, 6, Article No. 8971.
https://doi.org/10.1038/ncomms9971
[26]  Rhee, J., Jung, Y.C., Kim, K.R., Yoo, J., Kim, J., Lee, Y., et al. (2018) Impact of Tumor Purity on Immune Gene Expression and Clustering Analyses across Multiple Cancer Types. Cancer Immunology Research, 6, 87-97.
https://doi.org/10.1158/2326-6066.cir-17-0201
[27]  Apetoh, L., Ladoire, S., Coukos, G. and Ghiringhelli, F. (2015) Combining Immunotherapy and Anticancer Agents: The Right Path to Achieve Cancer Cure? Annals of Oncology, 26, 1813-1823.
https://doi.org/10.1093/annonc/mdv209
[28]  Bodor, J.N., Kasireddy, V. and Borghaei, H. (2018) First-Line Therapies for Metastatic Lung Adenocarcinoma without a Driver Mutation. Journal of Oncology Practice, 14, 529-535.
https://doi.org/10.1200/jop.18.00250
[29]  Hanahan, D. and Coussens, L.M. (2012) Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell, 21, 309-322.
https://doi.org/10.1016/j.ccr.2012.02.022
[30]  Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.
https://doi.org/10.1016/j.cell.2011.02.013
[31]  Schulz, M., Salamero-Boix, A., Niesel, K., Alekseeva, T. and Sevenich, L. (2019) Microenvironmental Regulation of Tumor Progression and Therapeutic Response in Brain Metastasis. Frontiers in Immunology, 10, Article 1713.
https://doi.org/10.3389/fimmu.2019.01713
[32]  Liu, W., Zhang, J., Xie, T., Huang, X., Wang, B., Tian, Y., et al. (2022) C1QTNF6 Is a Prognostic Biomarker and Related to Immune Infiltration and Drug Sensitivity: A Pan-Cancer Analysis. Frontiers in Pharmacology, 13, Article 855485.
https://doi.org/10.3389/fphar.2022.855485
[33]  Zhang, W., Li, T., Hu, B. and Li, H. (2020) PLEK2 Gene Upregulation Might Independently Predict Shorter Progression-Free Survival in Lung Adenocarcinoma. Technology in Cancer Research & Treatment, 19, 1-10.
https://doi.org/10.1177/1533033820957030
[34]  Lu, S., Yu, Z., Xiao, Z. and Zhang, Y. (2020) Gene Signatures and Prognostic Values of M6a Genes in Nasopharyngeal Carcinoma. Frontiers in Oncology, 10, Article 875.
https://doi.org/10.3389/fonc.2020.00875
[35]  Zhong, H., Wang, J., Zhu, Y. and Shen, Y. (2021) Comprehensive Analysis of a Nine-Gene Signature Related to Tumor Microenvironment in Lung Adenocarcinoma. Frontiers in Cell and Developmental Biology, 9, Article 700607.
https://doi.org/10.3389/fcell.2021.700607
[36]  Wen, Y., Guo, G., Yang, L., Chen, L., Zhao, D., He, X., et al. (2022) A Tumor Microenvironment Gene Set-Based Prognostic Signature for Non-Small-Cell Lung Cancer. Frontiers in Molecular Biosciences, 9, Article 849108.
https://doi.org/10.3389/fmolb.2022.849108
[37]  Saleh, R., Toor, S.M., Sasidharan Nair, V. and Elkord, E. (2020) Role of Epigenetic Modifications in Inhibitory Immune Checkpoints in Cancer Development and Progression. Frontiers in Immunology, 11, Article 1469.
https://doi.org/10.3389/fimmu.2020.01469
[38]  Rotte, A., Jin, J.Y. and Lemaire, V. (2018) Mechanistic Overview of Immune Checkpoints to Support the Rational Design of Their Combinations in Cancer Immunotherapy. Annals of Oncology, 29, 71-83.
https://doi.org/10.1093/annonc/mdx686
[39]  Lei, Y., Wang, S., Liu, J., Yan, W., Han, P. and Tian, D. (2021) Identification of MCM Family as Potential Therapeutic and Prognostic Targets for Hepatocellular Carcinoma Based on Bioinformatics and Experiments. Life Sciences, 272, Article ID: 119227.
https://doi.org/10.1016/j.lfs.2021.119227
[40]  Issac, M.S.M., Yousef, E., Tahir, M.R. and Gaboury, L.A. (2019) MCM2, MCM4, and MCM6 in Breast Cancer: Clinical Utility in Diagnosis and Prognosis. Neoplasia, 21, 1015-1035.
https://doi.org/10.1016/j.neo.2019.07.011
[41]  Zhang, P., Chen, X., Zhang, L., Cao, D., Chen, Y., Guo, Z., et al. (2022) POLE2 Facilitates the Malignant Phenotypes of Glioblastoma through Promoting AURKA-Mediated Stabilization of FOXM1. Cell Death & Disease, 13, Article No. 61.
https://doi.org/10.1038/s41419-021-04498-7
[42]  Zhang, C., Shen, Y., Gao, L., Wang, X., Huang, D., Xie, X., et al. (2021) Targeting POLE2 Creates a Novel Vulnerability in Renal Cell Carcinoma via Modulating Stanniocalcin 1. Frontiers in Cell and Developmental Biology, 9, Article 622344.
https://doi.org/10.3389/fcell.2021.622344
[43]  Jang, N., Baek, J., Ko, Y., Song, P.H. and Gu, M. (2021) High MCM6 Expression as a Potential Prognostic Marker in Clear-Cell Renal Cell Carcinoma. In Vivo, 35, 299-306.
https://doi.org/10.21873/invivo.12259
[44]  Xu, C., Pei, D., Liu, Y., Yu, Y., Guo, J., Liu, N., et al. (2022) Identification of a Novel Tumor Microenvironment Prognostic Signature for Bladder Urothelial Carcinoma. Frontiers in Oncology, 12, Article 818860.
https://doi.org/10.3389/fonc.2022.818860

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133