|
铁死亡在卵巢癌中的研究进展:从机制到治疗
|
Abstract:
卵巢癌是全球女性生殖系统中死亡率最高的一种恶性肿瘤,多数患者初次诊断即为晚期。现有的治疗方案是肿瘤细胞减灭术并辅以铂类为基础的联合化疗,但容易出现耐药和复发,因此迫切需要开发新的治疗方案。铁死亡是近年来发现的一种调节性细胞死亡形式,是铁依赖性的、非凋亡形式的细胞死亡过程。现有多项研究表明,铁死亡与卵巢癌相关。本文综述了铁死亡在卵巢癌中的发生机制、铁死亡诱导剂与抑制剂对卵巢癌的作用以及铁死亡在铂耐药卵巢癌中的应用,以期为后续的卵巢癌治疗提供新的思路和方向。
Ovarian cancer is a malignant tumor with the highest rate of mortality in the female reproductive system globally, however, and most patients are diagnosed at an advanced stage at first. The current treatment strategy of tumor cytoreduction supplemented with platinum-based combination chemotherapy is prone to drug resistance and relapse, necessitating the urgent need to develop new treatment options. Ferroptosis is a form of regulated cell death (RCD) discovered in recent years, and it is an iron-dependent, non-apoptotic form of cell death process. Several existing studies have shown that ferroptosis is associated with ovarian cancer. Therefore, this article reviews the mechanism of ferroptosis in ovarian cancer, the role of inducers and inhibitors of ferroptosis in ovarian cancer, and the application of ferroptosis in platinum-resistant ovarian cancer, with a view to providing new ideas and directions for subsequent ovarian cancer treatment.
[1] | Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. https://doi.org/10.3322/caac.21708 |
[2] | Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660 |
[3] | Kuroki, L. and Guntupalli, S.R. (2020) Treatment of Epithelial Ovarian Cancer. BMJ, 371, m3773. https://doi.org/10.1136/bmj.m3773 |
[4] | Cortez, A.J., Tudrej, P., Kujawa, K.A. and Lisowska, K.M. (2017) Advances in Ovarian Cancer Therapy. Cancer Chemotherapy and Pharmacology, 81, 17-38. https://doi.org/10.1007/s00280-017-3501-8 |
[5] | Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042 |
[6] | Battaglia, A.M., Sacco, A., Perrotta, I.D., Faniello, M.C., Scalise, M., Torella, D., et al. (2022) Iron Administration Overcomes Resistance to Erastin-Mediated Ferroptosis in Ovarian Cancer Cells. Frontiers in Oncology, 12, Article 868351. https://doi.org/10.3389/fonc.2022.868351 |
[7] | Basuli, D., Tesfay, L., Deng, Z., Paul, B., Yamamoto, Y., Ning, G., et al. (2017) Iron Addiction: A Novel Therapeutic Target in Ovarian Cancer. Oncogene, 36, 4089-4099. https://doi.org/10.1038/onc.2017.11 |
[8] | Dolma, S., Lessnick, S.L., Hahn, W.C. and Stockwell, B.R. (2003) Identification of Genotype-Selective Antitumor Agents Using Synthetic Lethal Chemical Screening in Engineered Human Tumor Cells. Cancer Cell, 3, 285-296. https://doi.org/10.1016/s1535-6108(03)00050-3 |
[9] | Yang, W.S. and Stockwell, B.R. (2008) Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-RAS-Harboring Cancer Cells. Chemistry & Biology, 15, 234-245. https://doi.org/10.1016/j.chembiol.2008.02.010 |
[10] | Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., et al. (2019) The Coq Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature, 575, 688-692. https://doi.org/10.1038/s41586-019-1705-2 |
[11] | Tang, D.L., Chen, X., Kang, R. and Kroemer, G. (2020) Ferroptosis: Molecular Mechanisms and Health Implications. Cell Research, 31, 107-125. https://doi.org/10.1038/s41422-020-00441-1 |
[12] | Rockfield, S., Raffel, J., Mehta, R., Rehman, N. and Nanjundan, M. (2017) Iron Overload and Altered Iron Metabolism in Ovarian Cancer. Biological Chemistry, 398, 995-1007. https://doi.org/10.1515/hsz-2016-0336 |
[13] | Crielaard, B.J., Lammers, T. and Rivella, S. (2017) Targeting Iron Metabolism in Drug Discovery and Delivery. Nature Reviews Drug Discovery, 16, 400-423. https://doi.org/10.1038/nrd.2016.248 |
[14] | Trujillo-Alonso, V., Pratt, E.C., Zong, H., Lara-Martinez, A., Kaittanis, C., Rabie, M.O., et al. (2019) Fda-Approved Ferumoxytol Displays Anti-Leukaemia Efficacy against Cells with Low Ferroportin Levels. Nature Nanotechnology, 14, 616-622. https://doi.org/10.1038/s41565-019-0406-1 |
[15] | Lattuada, D., Uberti, F., Colciaghi, B., Morsanuto, V., Maldi, E., Squarzanti, D.F., et al. (2015) Fimbrial Cells Exposure to Catalytic Iron Mimics Carcinogenic Changes. International Journal of Gynecological Cancer, 25, 389-398. https://doi.org/10.1097/igc.0000000000000379 |
[16] | Oda, K., Hamanishi, J., Matsuo, K. and Hasegawa, K. (2018) Genomics to Immunotherapy of Ovarian Clear Cell Carcinoma: Unique Opportunities for Management. Gynecologic Oncology, 151, 381-389. https://doi.org/10.1016/j.ygyno.2018.09.001 |
[17] | Koppula, P., Zhuang, L. and Gan, B. (2020) Cystine Transporter SLC7A11/xCT in Cancer: Ferroptosis, Nutrient Dependency, and Cancer Therapy. Protein & Cell, 12, 599-620. https://doi.org/10.1007/s13238-020-00789-5 |
[18] | Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. https://doi.org/10.1016/j.cell.2017.09.021 |
[19] | Gaschler, M.M., Andia, A.A., Liu, H., Csuka, J.M., Hurlocker, B., Vaiana, C.A., et al. (2018) FINO2 Initiates Ferroptosis through GPX4 Inactivation and Iron Oxidation. Nature Chemical Biology, 14, 507-515. https://doi.org/10.1038/s41589-018-0031-6 |
[20] | Seibt, T.M., Proneth, B. and Conrad, M. (2019) Role of GPX4 in Ferroptosis and Its Pharmacological Implication. Free Radical Biology and Medicine, 133, 144-152. https://doi.org/10.1016/j.freeradbiomed.2018.09.014 |
[21] | Novera, W., Lee, Z., Nin, D.S., Dai, M.Z., Binte Idres, S., Wu, H., et al. (2020) Cysteine Deprivation Targets Ovarian Clear Cell Carcinoma via Oxidative Stress and Iron-Sulfur Cluster Biogenesis Deficit. Antioxidants & Redox Signaling, 33, 1191-1208. https://doi.org/10.1089/ars.2019.7850 |
[22] | Kanapathipillai, M. (2018) Treating P53 Mutant Aggregation-Associated Cancer. Cancers, 10, Article 154. https://doi.org/10.3390/cancers10060154 |
[23] | Zhang, Y.H., Feng, X.L., Zhang, J., Chen, M.Y., Huang, E. and Chen, X.B. (2019) Iron Regulatory Protein 2 Is a Suppressor of Mutant P53 in Tumorigenesis. Oncogene, 38, 6256-6269. https://doi.org/10.1038/s41388-019-0876-5 |
[24] | Kaiser, A.M. and Attardi, L.D. (2017) Deconstructing Networks of P53-Mediated Tumor Suppression in Vivo. Cell Death & Differentiation, 25, 93-103. https://doi.org/10.1038/cdd.2017.171 |
[25] | Zhang, C.M. and Liu, N. (2022) Ferroptosis, Necroptosis, and Pyroptosis in the Occurrence and Development of Ovarian Cancer. Frontiers in Immunology, 13, Article 920059. https://doi.org/10.3389/fimmu.2022.920059 |
[26] | Huang, C.L., Yang, M.C., Deng, J., Li, P., Su, W.J. and Jiang, R. (2018) Upregulation and Activation of P53 by Erastin-Induced Reactive Oxygen Species Contribute to Cytotoxic and Cytostatic Effects in A549 Lung Cancer Cells. Oncology Reports, 40, 2363-2370. https://doi.org/10.3892/or.2018.6585 |
[27] | Hong, T., Lei, G., Chen, X., Li, H., Zhang, X.Y., Wu, N.Y., et al. (2021) PARP Inhibition Promotes Ferroptosis via Repressing SLC7A11 and Synergizes with Ferroptosis Inducers in BRCA-Proficient Ovarian Cancer. Redox Biology, 42, Article ID: 101928. https://doi.org/10.1016/j.redox.2021.101928 |
[28] | Wu, X.D., Shen, S.Z., Qin, J.L., Fei, W.D., Fan, F.Y., Gu, J.X., et al. (2022) High Co‐Expression of Slc7a11 and GPX4 as a Predictor of Platinum Resistance and Poor Prognosis in Patients with Epithelial Ovarian Cancer. BJOG: An International Journal of Obstetrics & Gynaecology, 129, 40-49. https://doi.org/10.1111/1471-0528.17327 |
[29] | Sui, X.B., Zhang, R.N., Liu, S.P., Duan, T., Zhai, L.J., Zhang, M.M., et al. (2018) RSL3 Drives Ferroptosis through GPX4 Inactivation and ROS Production in Colorectal Cancer. Frontiers in Pharmacology, 9, Article 1371. https://doi.org/10.3389/fphar.2018.01371 |
[30] | Wei, Y.P., Lv, H.H., Shaikh, A.B., Han, W., Hou, H.J., Zhang, Z.H., et al. (2020) Directly Targeting Glutathione Peroxidase 4 May Be More Effective than Disrupting Glutathione on Ferroptosis-Based Cancer Therapy. Biochimica et Biophysica Acta (BBA)-General Subjects, 1864, Article ID: 129539. https://doi.org/10.1016/j.bbagen.2020.129539 |
[31] | Li, D.X., Zhang, M.L. and Chao, H.T. (2021) Significance of Glutathione Peroxidase 4 and Intracellular Iron Level in Ovarian Cancer Cells—“Utilization” of Ferroptosis Mechanism. Inflammation Research, 70, 1177-1189. https://doi.org/10.1007/s00011-021-01495-6 |
[32] | Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., et al. (2016) Ferroptosis: Process and Function. Cell Death & Differentiation, 23, 369-379. https://doi.org/10.1038/cdd.2015.158 |
[33] | Nunes, S.C., Ramos, C., Lopes-Coelho, F., Sequeira, C.O., Silva, F., Gouveia-Fernandes, S., et al. (2018) Cysteine Allows Ovarian Cancer Cells to Adapt to Hypoxia and to Escape from Carboplatin Cytotoxicity. Scientific Reports, 8, Article No. 9513. https://doi.org/10.1038/s41598-018-27753-y |
[34] | Sbodio, J.I., Snyder, S.H. and Paul, B.D. (2018) Regulators of the Transsulfuration Pathway. British Journal of Pharmacology, 176, 583-593. https://doi.org/10.1111/bph.14446 |
[35] | Liu, N., Lin, X.L. and Huang, C.Y. (2019) Activation of the Reverse Transsulfuration Pathway through NRF2/CBS Confers Erastin-Induced Ferroptosis Resistance. British Journal of Cancer, 122, 279-292. https://doi.org/10.1038/s41416-019-0660-x |
[36] | Liu, J., Kang, R. and Tang, D. (2021) Signaling Pathways and Defense Mechanisms of Ferroptosis. The FEBS Journal, 289, 7038-7050. https://doi.org/10.1111/febs.16059 |
[37] | 赵田禾, 李欣洋, 孙东雷, 等. 铁离子与铁死亡:衰老研究领域的新大陆[J]. 现代预防医学, 2018, 45(23): 4392-4395. |
[38] | Yan, H.-F., Zou, T., Tuo, Q.-Z., Xu, S., Li, H., Belaidi, A.A., et al. (2021) Ferroptosis: Mechanisms and Links with Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 49. https://doi.org/10.1038/s41392-020-00428-9 |
[39] | Chu, B., Kon, N., Chen, D.L., Li, T.Y., Liu, T., Jiang, L., et al. (2019) ALOX12 Is Required for P53-Mediated Tumour Suppression through a Distinct Ferroptosis Pathway. Nature Cell Biology, 21, 579-591. https://doi.org/10.1038/s41556-019-0305-6 |
[40] | Ou, Y., Wang, S.-J., Li, D.Ww., Chu, B. and Gu, W. (2016) Activation of SAT1 Engages Polyamine Metabolism with P53-Mediated Ferroptotic Responses. Proceedings of the National Academy of Sciences, 113, E6806-E6812. https://doi.org/10.1073/pnas.1607152113 |
[41] | Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by Gpx4. Cell, 156, 317-331. https://doi.org/10.1016/j.cell.2013.12.010 |
[42] | Shimada, K., Skouta, R., Kaplan, A., Yang, W.S., Hayano, M., Dixon, S.J., et al. (2016) Global Survey of Cell Death Mechanisms Reveals Metabolic Regulation of Ferroptosis. Nature Chemical Biology, 12, 497-503. https://doi.org/10.1038/nchembio.2079 |
[43] | Cao, Y., Li, Y., He, C., Yan, F., Li, J.-R., Xu, H.-Z., et al. (2021) Selective Ferroptosis Inhibitor Liproxstatin-1 Attenuates Neurological Deficits and Neuroinflammation after Subarachnoid Hemorrhage. Neuroscience Bulletin, 37, 535-549. https://doi.org/10.1007/s12264-020-00620-5 |
[44] | Mei, H.L., Zhao, L.P., Li, W., Zheng, Z.W., Tang, D.M., Lu, X.L., et al. (2020) Inhibition of Ferroptosis Protects House Ear Institute‐organ of Corti 1 Cells and Cochlear Hair Cells from Cisplatin‐Induced Ototoxicity. Journal of Cellular and Molecular Medicine, 24, 12065-12081. https://doi.org/10.1111/jcmm.15839 |
[45] | Ye, L.F., Chaudhary, K.R., Zandkarimi, F., Harken, A.D., Kinslow, C.J., Upadhyayula, P.S., et al. (2020) Radiation-Induced Lipid Peroxidation Triggers Ferroptosis and Synergizes with Ferroptosis Inducers. ACS Chemical Biology, 15, 469-484. https://doi.org/10.1021/acschembio.9b00939 |
[46] | Liang, C., Zhang, X.L., Yang, M.S. and Dong, X.C. (2019) Recent Progress in Ferroptosis Inducers for Cancer Therapy. Advanced Materials, 31, Article 1904197. https://doi.org/10.1002/adma.201904197 |
[47] | Li, J.B., Liu, J.A., Zhou, Z.A., Wu, R.L., Chen, X., Yu, C.H., et al. (2023) Tumor-Specific GPX4 Degradation Enhances Ferroptosis-Initiated Antitumor Immune Response in Mouse Models of Pancreatic Cancer. Science Translational Medicine, 15, eadg3049. https://doi.org/10.1126/scitranslmed.adg3049 |
[48] | Hassannia, B., Vandenabeele, P. and Vanden Berghe, T. (2019) Targeting Ferroptosis to Iron Out Cancer. Cancer Cell, 35, 830-849. https://doi.org/10.1016/j.ccell.2019.04.002 |
[49] | Gao, M., Deng, J., Liu, F., Fan, A., Wang, Y., Wu, H., et al. (2019) Triggered Ferroptotic Polymer Micelles for Reversing Multidrug Resistance to Chemotherapy. Biomaterials, 223, Article ID: 119486. https://doi.org/10.1016/j.biomaterials.2019.119486 |
[50] | Efferth, T. (2017) From Ancient Herb to Modern Drug: Artemisia Annua and Artemisinin for Cancer Therapy. Seminars in Cancer Biology, 46, 65-83. https://doi.org/10.1016/j.semcancer.2017.02.009 |
[51] | Sun, Y.H., Xue, Z.X., Huang, T., Che, X.Y. and Wu, G.Z. (2022) Lipid Metabolism in Ferroptosis and Ferroptosis-Based Cancer Therapy. Frontiers in Oncology, 12, Article 941618. https://doi.org/10.3389/fonc.2022.941618 |
[52] | Chen, X., Yu, C.H., Kang, R. and Tang, D.L. (2020) Iron Metabolism in Ferroptosis. Frontiers in Cell and Developmental Biology, 8, Article 590226. https://doi.org/10.3389/fcell.2020.590226 |
[53] | Zhou, Q., Yang, L., Li, T., Wang, K., Huang, X., Shi, J., et al. (2022) Mechanisms and Inhibitors of Ferroptosis in Psoriasis. Frontiers in Molecular Biosciences, 9, Article 1019447. https://doi.org/10.3389/fmolb.2022.1019447 |
[54] | Miotto, G., Rossetto, M., Di Paolo, M.L., Orian, L., Venerando, R., Roveri, A., et al. (2020) Insight into the Mechanism of Ferroptosis Inhibition by Ferrostatin-1. Redox Biology, 28, Article ID: 101328. https://doi.org/10.1016/j.redox.2019.101328 |
[55] | Zilka, O., Shah, R., Li, B., Friedmann Angeli, J.P., Griesser, M., Conrad, M., et al. (2017) On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS Central Science, 3, 232-243. https://doi.org/10.1021/acscentsci.7b00028 |
[56] | Li, Q., Li, Q.-Q., Jia, J.-N., Sun, Q.-Y., Zhou, H.-H., Jin, W.-L., et al. (2019) Baicalein Exerts Neuroprotective Effects in Fecl3-Induced Posttraumatic Epileptic Seizures via Suppressing Ferroptosis. Frontiers in Pharmacology, 10, Article 638. https://doi.org/10.3389/fphar.2019.00638 |
[57] | Du, Y. and Guo, Z. (2022) Recent Progress in Ferroptosis: Inducers and Inhibitors. Cell Death Discovery, 8, Article No. 501. https://doi.org/10.1038/s41420-022-01297-7 |
[58] | Sun, J.C., Wei, Q., Zhou, Y.B., Wang, J.Q., Liu, Q. and Xu, H. (2017) A Systematic Analysis of FDA-Approved Anticancer Drugs. BMC Systems Biology, 11, Article No. 87. https://doi.org/10.1186/s12918-017-0464-7 |
[59] | Chekerov, R., Hilpert, F., Mahner, S., El-Balat, A., Harter, P., De Gregorio, N., et al. (2018) Sorafenib Plus Topotecan versus Placebo Plus Topotecan for Platinum-Resistant Ovarian Cancer (TRIAS): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. The Lancet Oncology, 19, 1247-1258. https://doi.org/10.1016/s1470-2045(18)30372-3 |
[60] | Greenshields, A.L., Shepherd, T.G. and Hoskin, D.W. (2016) Contribution of Reactive Oxygen Species to Ovarian Cancer Cell Growth Arrest and Killing by the Anti-Malarial Drug Artesunate. Molecular Carcinogenesis, 56, 75-93. https://doi.org/10.1002/mc.22474 |
[61] | Zhang, Y., Xia, M., Zhou, Z.Z., Hu, X., Wang, J., Zhang, M., et al. (2021) P53 Promoted Ferroptosis in Ovarian Cancer Cells Treated with Human Serum Incubated-Superparamagnetic Iron Oxides. International Journal of Nanomedicine, 16, 283-296. https://doi.org/10.2147/ijn.s282489 |
[62] | Kato, I., Kasukabe, T. and Kumakura, S. (2020) Menin-MLL Inhibitors Induce Ferroptosis and Enhance the Anti-Proliferative Activity of Auranofin in Several Types of Cancer Cells. International Journal of Oncology, 57, 1057-1071. https://doi.org/10.3892/ijo.2020.5116 |
[63] | Jing, T.T., Guo, Y.L. and Wei, Y.Q. (2022) Carboxymethylated Pachyman Induces Ferroptosis in Ovarian Cancer by Suppressing NRF1/HO1 Signaling. Oncology Letters, 23, Article No. 161. https://doi.org/10.3892/ol.2022.13281 |
[64] | 李勇, 廖莎. 铁死亡相关基因的卵巢癌患者生存预测模型[J]. 中国生育健康杂志, 2023, 34(1): 83-89. |
[65] | Chen, Y., Liao, X.M., Jing, P., Hu, L.K., Yang, Z.Q., Yao, Y.C., et al. (2022) Linoleic Acid-Glucosamine Hybrid for Endogenous Iron-Activated Ferroptosis Therapy in High-Grade Serous Ovarian Cancer. Molecular Pharmaceutics, 19, 3187-3198. https://doi.org/10.1021/acs.molpharmaceut.2c00333 |
[66] | van Zyl, B., Tang, D. and Bowden, N.A. (2018) Biomarkers of Platinum Resistance in Ovarian Cancer: What Can We Use to Improve Treatment. Endocrine-Related Cancer, 25, R303-R318. https://doi.org/10.1530/erc-17-0336 |
[67] | Wang, Y.N., Zhao, G.Y., Condello, S., Huang, H., Cardenas, H., Tanner, E.J., et al. (2021) Frizzled-7 Identifies Platinum-Tolerant Ovarian Cancer Cells Susceptible to Ferroptosis. Cancer Research, 81, 384-399. https://doi.org/10.1158/0008-5472.can-20-1488 |
[68] | Chan, D.W., Yung, M.M., Chan, Y., Xuan, Y., Yang, H., Xu, D., et al. (2020) MAP30 Protein from Momordica Charantia Is Therapeutic and Has Synergic Activity with Cisplatin against Ovarian Cancer in Vivo by Altering Metabolism and Inducing Ferroptosis. Pharmacological Research, 161, Article ID: 105157. https://doi.org/10.1016/j.phrs.2020.105157 |
[69] | Cheng, Q., Bao, L.J., Li, M.Q., Chang, K.K. and Yi, X.F. (2021) Erastin Synergizes with Cisplatin via Ferroptosis to Inhibit Ovarian Cancer Growth in Vitro and in Vivo. Journal of Obstetrics and Gynaecology Research, 47, 2481-2491. https://doi.org/10.1111/jog.14779 |
[70] | Rumford, M., Lythgoe, M., McNeish, I., Gabra, H., Tookman, L., Rahman, N., et al. (2020) Oncologist-Led BRCA ‘Mainstreaming’ in the Ovarian Cancer Clinic: A Study of 255 Patients and Its Impact on Their Management. Scientific Reports, 10, Article No. 3390. https://doi.org/10.1038/s41598-020-60149-5 |
[71] | Chao, A., Chang, T.-C., Lapke, N., Jung, S.-M., Chi, P., Chen, C.-H., et al. (2016) Prevalence and Clinical Significance of BRCA1/2 Germline and Somatic Mutations in Taiwanese Patients with Ovarian Cancer. Oncotarget, 7, 85529-85541. https://doi.org/10.18632/oncotarget.13456 |