|
COVID-19与月经不规则及异常子宫出血之间的关系:一项两样本孟德尔随机分析
|
Abstract:
观察性研究发现,在2019冠状病毒大流行期间,女性月经不调、异常子宫出血的发病率较前增加,但没有研究证明两者之间存在因果关系。孟德尔随机化分析可以使用独立于混杂因素的遗传变异来获得因果关系的估计。我们旨在通过MR分析探讨COVID-19感染与异常子宫出血及月经不规则之间的因果关系。采用逆方差加权法(IVW)进行主要分析,并进行敏感性分析和多变量MR分析。结果发现,不同疾病程度的COVID-19患者与子宫内膜息肉存在因果关系,感染、患有严重的呼吸道疾病、住院患者的p值分别为0.0376、0.0298、0.00281,当COVID-19病毒感染进展到严重呼吸道疾病和住院阶段时,月经大出血的风险增大,p值分别为0.0432和0.0338。当接受MR-Egger回归法作为结果时,感染新冠肺炎病毒与宫颈息肉之间存在因果关系(p = 0.0490),因新冠肺炎住院的患者得子宫内膜恶性肿瘤的风险增大(p = 0.0310)。我们进一步研究了COVID-19与可能导致月经不规则的激素之间的关系,发现COVID-19可以影响宿主雌二醇和前列腺素E2的表达(COVID-19感染与前列腺素E2 p = 0.011;COVID-19感染患有严重呼吸道疾病病例与雌二醇p = 0.005;COVID-19感染住院病例与雌二醇p = 0.027)。综上所述,不同程度的新冠肺炎感染增加了女性月经大出血、子宫息肉甚至子宫内膜恶性肿瘤的风险,新冠肺炎感染同样会导致女性雌二醇及前列腺素E2水平降低,这可能进一步影响女性月经。
Observational studies have identified a rise in the incidence of irregular menstruation and abnormal uterine bleeding among women during the COVID-19 pandemic. However, no studies have established a causal link between the two. Mendelian randomization analysis leverages genetic variation, which is independent of confounding factors, to estimate causality. Our aim was to explore the causal relationship between COVID-19 infection and abnormal uterine bleeding as well as irregular menstruation using MR analysis. The main analysis employed the variance inverse weighting method (IVW). Sensitivity analysis and multivariate MR analysis were also conducted. The results indicated a causal relationship between patients with varying disease severity and endometrial polyps, with p-values for patients with infection, severe respiratory disease, and hospitalization being 0.0376, 0.0298, and 0.00281, respectively. As COVID-19 virus infection progressed to severe respiratory disease and hospitalization stages, the risk of heavy menstrual bleeding increased, with p-values of 0.0432 and 0.0338, respectively. When the MR-Egger regression method was considered, there was a causal relationship between COVID-19 virus infection and cervical polyps (p = 0.0490), and the risk of endometrial malignancies in hospitalized patients due to COVID-19 also increased (p = 0.0310). We further investigated the relationship between COVID-19 and hormones that may cause menstrual irregularities. We found that COVID-19 can affect the expression of estradiol and prostaglandin E2 in the host (p = 0.011 for COVID-19 infection and prostaglandin E2; p = 0.005 for patients with severe respiratory disease and estradiol p; p = 0.027 for inpatients with COVID-19 infection and estradiol). In summary, varying degrees of COVID-19 infection
[1] | Liao, X., Wang, B. and Kang, Y. (2020) Novel Coronavirus Infection during the 2019-2020 Epidemic: Preparing Intensive Care Units—The Experience in Sichuan Province, China. Intensive Care Medicine, 46, 357-360. https://doi.org/10.1007/s00134-020-05954-2 |
[2] | Gupta, M.D., Girish, M.P., Yadav, G., Shankar, A. and Yadav, R. (2020) Coronavirus Disease 2019 and the Cardiovascular System: Impacts and Implications. Indian Heart Journal, 72, 1-6. https://doi.org/10.1016/j.ihj.2020.03.006 |
[3] | Jayaraman, P., Rajagopal, M., Paranjpe, I., Suarez-Farinas, M., Liharska, L., Thompson, R., et al. (2025) Peripheral Transcriptomics in Acute and Long-Term Kidney Dysfunction in SARS-CoV2 Infection. Kidney360. https://doi.org/10.34067/kid.0000000727 |
[4] | Beghi, E., Feigin, V., Caso, V., Santalucia, P. and Logroscino, G. (2020) COVID-19 Infection and Neurological Complications: Present Findings and Future Predictions. Neuroepidemiology, 54, 364-369. https://doi.org/10.1159/000508991 |
[5] | Khan, S.M., Shilen, A., Heslin, K.M., Ishimwe, P., Allen, A.M., Jacobs, E.T., et al. (2022) SARS-CoV-2 Infection and Subsequent Changes in the Menstrual Cycle among Participants in the Arizona Covhort Study. American Journal of Obstetrics and Gynecology, 226, 270-273. https://doi.org/10.1016/j.ajog.2021.09.016 |
[6] | Alvergne, A., Kountourides, G., Argentieri, M.A., Agyen, L., Rogers, N., Knight, D., et al. (2023) A Retrospective Case-Control Study on Menstrual Cycle Changes Following COVID-19 Vaccination and Disease. iScience, 26, Article ID: 106401. https://doi.org/10.1016/j.isci.2023.106401 |
[7] | Wang, S., Mortazavi, J., Hart, J.E., Hankins, J.A., Katuska, L.M., Farland, L.V., et al. (2022) A Prospective Study of the Association between Sars-Cov-2 Infection and COVID-19 Vaccination with Changes in Usual Menstrual Cycle Characteristics. American Journal of Obstetrics and Gynecology, 227, 739.e1-739.e11. https://doi.org/10.1016/j.ajog.2022.07.003 |
[8] | Burgess, S., Butterworth, A. and Thompson, S.G. (2013) Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 37, 658-665. https://doi.org/10.1002/gepi.21758 |
[9] | Boef, A.G.C., Dekkers, O.M. and le Cessie, S. (2015) Mendelian Randomization Studies: A Review of the Approaches Used and the Quality of Reporting. International Journal of Epidemiology, 44, 496-511. https://doi.org/10.1093/ije/dyv071 |
[10] | COVID-19 Host Genetics Initiative (2020) The COVID-19 Host Genetics Initiative, a Global Initiative to Elucidate the Role of Host Genetic Factors in Susceptibility and Severity of the SARS-CoV-2 Virus Pandemic. European Journal of Human Genetics, 28, 715-718. https://doi.org/10.1038/s41431-020-0636-6 |
[11] | Sun, Y., Ding, Z., Guo, Y., Yuan, J., Zhu, C., Pan, Y., et al. (2023) Causal Inference of Central Nervous System-Regulated Hormones in COVID-19: A Bidirectional Two-Sample Mendelian Randomization Study. Journal of Clinical Medicine, 12, Article 1681. https://doi.org/10.3390/jcm12041681 |
[12] | Canela-Xandri, O., Rawlik, K. and Tenesa, A. (2018) An Atlas of Genetic Associations in UK Biobank. Nature Genetics, 50, 1593-1599. https://doi.org/10.1038/s41588-018-0248-z |
[13] | Sakaue, S., Kanai, M., Tanigawa, Y., Karjalainen, J., Kurki, M., Koshiba, S., et al. (2021) A Cross-Population Atlas of Genetic Associations for 220 Human Phenotypes. Nature Genetics, 53, 1415-1424. https://doi.org/10.1038/s41588-021-00931-x |
[14] | Sun, B.B., Maranville, J.C., Peters, J.E., Stacey, D., Staley, J.R., Blackshaw, J., et al. (2018) Genomic Atlas of the Human Plasma Proteome. Nature, 558, 73-79. https://doi.org/10.1038/s41586-018-0175-2 |
[15] | Barton, A.R., Sherman, M.A., Mukamel, R.E. and Loh, P. (2021) Whole-Exome Imputation within UK Biobank Powers Rare Coding Variant Association and Fine-Mapping Analyses. Nature Genetics, 53, 1260-1269. https://doi.org/10.1038/s41588-021-00892-1 |
[16] | Schmitz, D., Ek, W.E., Berggren, E., Höglund, J., Karlsson, T. and Johansson, Å. (2021) Genome-Wide Association Study of Estradiol Levels and the Causal Effect of Estradiol on Bone Mineral Density. The Journal of Clinical Endocrinology & Metabolism, 106, e4471-e4486. |
[17] | Folkersen, L., Gustafsson, S., Wang, Q., Hansen, D.H., Hedman, Å.K., Schork, A., et al. (2020) Genomic and Drug Target Evaluation of 90 Cardiovascular Proteins in 30,931 Individuals. Nature Metabolism, 2, 1135-1148. https://doi.org/10.1038/s42255-020-00287-2 |
[18] | Shin, S., Fauman, E.B., Petersen, A., Krumsiek, J., Santos, R., Huang, J., et al. (2014) An Atlas of Genetic Influences on Human Blood Metabolites. Nature Genetics, 46, 543-550. https://doi.org/10.1038/ng.2982 |
[19] | Pietzner, M., Wheeler, E., Carrasco-Zanini, J., Raffler, J., Kerrison, N.D., Oerton, E., et al. (2021) Author Correction: Genetic Architecture of Host Proteins Involved in SARS-CoV-2 Infection. Nature Communications, 12, Article No. 845. https://doi.org/10.1038/s41467-021-21370-6 |
[20] | Bowden, S.J., Doulgeraki, T., Bouras, E., Markozannes, G., Athanasiou, A., Grout-Smith, H., et al. (2023) Risk Factors for Human Papillomavirus Infection, Cervical Intraepithelial Neoplasia and Cervical Cancer: An Umbrella Review and Follow-Up Mendelian Randomisation Studies. BMC Medicine, 21, Article No. 274. https://doi.org/10.1186/s12916-023-02965-w |
[21] | Tayyaba Rehan, S., Imran, L., Mansoor, H., Sayyeda, Q., Hussain, H.u., Cheema, M.S., et al. (2022) Effects of SARS‐CoV‐2 Infection and COVID‐19 Pandemic on Menstrual Health of Women: A Systematic Review. Health Science Reports, 5, e881. https://doi.org/10.1002/hsr2.881 |
[22] | Sigfrid, L., Drake, T.M., Pauley, E., Jesudason, E.C., Olliaro, P., Lim, W.S., et al. (2021) Long Covid in Adults Discharged from UK Hospitals after Covid-19: A Prospective, Multicentre Cohort Study Using the ISARIC WHO Clinical Characterisation Protocol. The Lancet Regional Health—Europe, 8, Article ID: 100186. https://doi.org/10.1016/j.lanepe.2021.100186 |
[23] | Li, K., Chen, G., Hou, H., Liao, Q., Chen, J., Bai, H., et al. (2021) Analysis of Sex Hormones and Menstruation in COVID-19 Women of Child-Bearing Age. Reproductive BioMedicine Online, 42, 260-267. https://doi.org/10.1016/j.rbmo.2020.09.020 |
[24] | Sun, W., Xia, L., Ji, C., Wei, Q., Zhang, J., He, S., et al. (2023) Relationship between Covid-Pandemic Anxiety and Sleep Disorder with Menstrual Disorders among Female Medical Workers. BMC Women’s Health, 23, Article No. 210. https://doi.org/10.1186/s12905-023-02314-2 |
[25] | Smith, O.P.M., Jabbour, H.N. and Critchley, H.O.D. (2007) Cyclooxygenase Enzyme Expression and E Series Prostaglandin Receptor Signalling Are Enhanced in Heavy Menstruation. Human Reproduction, 22, 1450-1456. https://doi.org/10.1093/humrep/del503 |
[26] | Smith, S.K., Abel, M.H., Kelly, R.W. and Baird, D.T. (1981) Prostaglandin Synthesis in the Endometrium of Women with Ovular Dysfunctional Uterine Bleeding. BJOG: An International Journal of Obstetrics & Gynaecology, 88, 434-442. https://doi.org/10.1111/j.1471-0528.1981.tb01009.x |
[27] | Smith, S. (1981) A Role for Prostacyclin (PGI2) in Excessive Menstrual Bleeding. The Lancet, 317, 522-524. https://doi.org/10.1016/s0140-6736(81)92862-2 |
[28] | de Miguel-Gómez, L., Sebastián-León, P., Romeu, M., Pellicer, N., Faus, A., Pellicer, A., et al. (2022) Endometrial Gene Expression Differences in Women with Coronavirus Disease 2019. Fertility and Sterility, 118, 1159-1169. https://doi.org/10.1016/j.fertnstert.2022.09.013 |
[29] | Menakuru, S.R., Priscu, A., Dhillon, V.S. and Salih, A. (2022) The Development of Immune Thrombocytopenia Due to COVID-19 Presenting as Menorrhagia. Cureus, 14, e24160. https://doi.org/10.7759/cureus.24160 |
[30] | Rae, M., Mohamad, A., Price, D., Hadoke, P.W.F., Walker, B.R., Mason, J.I., et al. (2009) Cortisol Inactivation by 11β-Hydroxysteroid Dehydrogenase-2 May Enhance Endometrial Angiogenesis via Reduced Thrombospondin-1 in Heavy Menstruation. The Journal of Clinical Endocrinology & Metabolism, 94, 1443-1450. https://doi.org/10.1210/jc.2008-1879 |
[31] | Paik, H. and Kim, S.K. (2023) Female Reproduction and Abnormal Uterine Bleeding after COVID-19 Vaccination. Clinical and Experimental Reproductive Medicine, 50, 69-77. https://doi.org/10.5653/cerm.2023.05925 |
[32] | Phelan, N., Behan, L.A. and Owens, L. (2021) The Impact of the COVID-19 Pandemic on Women’s Reproductive Health. Frontiers in Endocrinology, 12, Article 642755. https://doi.org/10.3389/fendo.2021.642755 |
[33] | Stewart, S., Newson, L., Briggs, T.A., Grammatopoulos, D., Young, L. and Gill, P. (2021) Long COVID Risk—A Signal to Address Sex Hormones and Women’s Health. The Lancet Regional Health—Europe, 11, Article ID: 100242. https://doi.org/10.1016/j.lanepe.2021.100242 |
[34] | Takmaz, T., Gundogmus, I., Okten, S.B. and Gunduz, A. (2021) The Impact of Covid‐19‐Related Mental Health Issues on Menstrual Cycle Characteristics of Female Healthcare Providers. Journal of Obstetrics and Gynaecology Research, 47, 3241-3249. https://doi.org/10.1111/jog.14900 |
[35] | Alghamdi, I., Hussain, I., Alghamdi, M., Almalki, S., Alghamdi, M. and Elsheemy, M. (2014) The Pattern of Middle East Respiratory Syndrome Coronavirus in Saudi Arabia: A Descriptive Epidemiological Analysis of Data from the Saudi Ministry of Health. International Journal of General Medicine, 7, 417-423. https://doi.org/10.2147/ijgm.s67061 |
[36] | Gilhooly, P.E., Ottenweller, J.E., Lange, G., Tiersky, L. and Natelson, B.H. (2001) Chronic Fatigue and Sexual Dysfunction in Female Gulf War Veterans. Journal of Sex & Marital Therapy, 27, 483-487. https://doi.org/10.1080/713846825 |
[37] | Kissinger, P., Schmidt, N., Sanders, C. and Liddon, N. (2007) The Effect of the Hurricane Katrina Disaster on Sexual Behavior and Access to Reproductive Care for Young Women in New Orleans. Sexually Transmitted Diseases, 34, 883-886. https://doi.org/10.1097/olq.0b013e318074c5f8 |