全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

单侧前循环梗死患者非狭窄颈动脉斑块特征与来源不明栓塞性卒中的关联性研究:基于人工智能的CTA分析
Association between Non-Stenosis Carotid Plaque Characteristics and Embolic Stroke of Undetermined Source in Patients with Unilateral Anterior Circulation Infarction: A CTA Analysis Based AI

DOI: 10.12677/acm.2025.153868, PP. 2325-2335

Keywords: 未知源性栓塞性卒中,非狭窄颈动脉斑块,易损斑块,计算机断层扫描血管造影,人工智能
Embolic Stroke of Undetermined Source
, Non-Stenosis Carotid Plaque, Vulnerable Plaque, Computed Tomography Angiography, Artificial Intelligence

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:借助人工智能(Artificial Intelligence, AI)评估单侧前循环梗死患者计算机断层血管造影(Computed Tomography Angiography, CTA)非颈动脉斑块的特征与来源不明的栓塞性卒中(Embolic Stroke of Undetermined Source, ESUS)之间的关联。方法:确定2022年5月至2024年3月入院的急性单侧前循环缺血性脑卒中患者,纳入大动脉粥样硬化(Large Artery Atherosclerosis Stroke, LAAS)、ESUS、心源性栓塞(Cardioembolic Stroke, CES)患者,比较ESUS与LAAS及CES患者的临床特征,并基于CTA影像的AI自动分析比较ESUS患者缺血事件同侧及对侧颈动脉斑块特征的差异并探求其关联。结果:我们对72例LAAS患者、50例ESUS患者及30例CES患者进行分析,发现ESUS与LAAS患者相较发病年龄更小、C反应蛋白水平更低。ESUS与CES患者相较合并更多的血管危险因素和更少的异常心脏指标。在影像学方面,ESUS患者缺血事件同侧颈动脉混合或非钙化斑块数量多于对侧,管腔狭窄处混合或非钙化斑块的发生率更高;Logistic回归分析显示两者均为ESUS的独立影响因素。比较LAAS与ESUS缺血事件侧颈动脉斑块特征发现,LAAS颈动脉混合或非钙化斑块更加普遍。结论:ESUS的临床危险因素更接近LAAS而不是CES,混合或非钙化斑块在缺血事件同侧更常见,可能为ESUS的潜在病因标志。
Objective: To evaluate the association between characteristics of non-carotid plaque and embolic stroke of undetermined source (ESUS) on computed tomography angiography (CTA) in patients with unilateral anterior circulation infarction with artificial intelligence (AI). Methods: Patients with acute unilateral anterior circulation ischemic stroke admitted to the hospital from May 2022 to March 2024 were identified and included as large artery atherosclerosis stroke (LAAS), ESUS, and cardioembolic stroke (CES). The clinical features of ESUS, LAAS, and CES patients were compared and AI-based on CTA images automatically analyzed and compared the differences in ipsilateral and contralateral carotid plaque features of ESUS patients with ischemic events and explored their correlation. Results: We analyzed 72 patients with LAAS, 50 patients with ESUS, and 30 patients with CES and found that ESUS patients had younger onset age and lower C-reactive protein levels than LAAS patients. ESUS patients had more vascular risk factors and fewer abnormal cardiac markers than CES patients. In terms of imaging, ESUS patients had more mixed or non-calcified plaques in the ipsilateral carotid artery than the contralateral carotid artery, and the incidence of mixed or non-calcified plaques in lumen stenosis was higher. Logistic regression analysis showed that both were independent influencing factors of ESUS. Comparing the features of carotid plaque on the side of LAAS and ESUS ischemic events, it was found that mixed or non-calcified carotid plaque of LAAS was more common. Conclusion: The clinical risk factors for ESUS are closer to LAAS than CES, and mixed or non-calcified plaques are more common on the same side of ischemic events, which may be a potential etiological marker for ESUS.

References

[1]  Hart, R.G., Diener, H., Coutts, S.B., Easton, J.D., Granger, C.B., O’Donnell, M.J., et al. (2014) Embolic Strokes of Undetermined Source: The Case for a New Clinical Construct. The Lancet Neurology, 13, 429-438.
https://doi.org/10.1016/s1474-4422(13)70310-7
[2]  Zhang, L., Guo, Y., Zhou, W., Zhu, S., Chen, Z., Dong, G., et al. (2022) Characteristics of Non-Stenotic Carotid Plaque in Embolic Stroke of Undetermined Source Compared with Cardiogenic Embolism: A Retrospective Cross-Sectional Observational Study. BMC Neurology, 22, Article No. 315.
https://doi.org/10.1186/s12883-022-02846-4
[3]  Larson, A.S., Nasr, D.M., Rizvi, A., Alzuabi, M., Seyedsaadat, S.M., Lanzino, G., et al. (2021) Embolic Stroke of Undetermined Source. JACC: Cardiovascular Imaging, 14, 506-508.
https://doi.org/10.1016/j.jcmg.2020.08.007
[4]  Mikail, N., Meseguer, E., Lavallée, P., Klein, I., Hobeanu, C., Guidoux, C., et al. (2022) Evaluation of Non-Stenotic Carotid Atherosclerotic Plaques with Combined FDG-PET Imaging and CT Angiography in Patients with Ischemic Stroke of Unknown Origin. Journal of Nuclear Cardiology, 29, 1329-1336.
https://doi.org/10.1007/s12350-020-02511-8
[5]  Guo, D., Lv, S., Wu, G., Li, H., Wei, B. and Yang, J. (2022) Features of Non-Stenotic Carotid Plaque on Computed Tomographic Angiography in Patients with Embolic Stroke of Undetermined Source. Frontiers in Cardiovascular Medicine, 9, Article ID: 971500.
https://doi.org/10.3389/fcvm.2022.971500
[6]  Giuricin, A., Rapillo, C.M., Arba, F., Lombardo, I., Sperti, M., Scrima, G.D., et al. (2024) Prevalence of Non-Stenotic Vulnerable Carotid Plaques in Embolic Stroke of Undetermined Source. Neurological Sciences, 46, 239-247.
https://doi.org/10.1007/s10072-024-07744-w
[7]  Saba, L., Saam, T., Jäger, H.R., Yuan, C., Hatsukami, T.S., Saloner, D., et al. (2019) Imaging Biomarkers of Vulnerable Carotid Plaques for Stroke Risk Prediction and Their Potential Clinical Implications. The Lancet Neurology, 18, 559-572.
https://doi.org/10.1016/s1474-4422(19)30035-3
[8]  Gao, S., Wang, Y.J., Xu, A.D., Li, Y.S. and Wang, D.Z. (2011) Chinese Ischemic Stroke Subclassification. Frontiers in Neurology, 2, Article No. 6.
https://doi.org/10.3389/fneur.2011.00006
[9]  Fu, F., Shan, Y., Yang, G., Zheng, C., Zhang, M., Rong, D., et al. (2023) Deep Learning for Head and Neck CT Angiography: Stenosis and Plaque Classification. Radiology, 307, e220996.
https://doi.org/10.1148/radiol.220996
[10]  Hedderich, D.M., Weisstanner, C., Van Cauter, S., Federau, C., Edjlali, M., Radbruch, A., et al. (2023) Artificial Intelligence Tools in Clinical Neuroradiology: Essential Medico-Legal Aspects. Neuroradiology, 65, 1091-1099.
https://doi.org/10.1007/s00234-023-03152-7
[11]  Yang, J., Xie, M., Hu, C., Alwalid, O., Xu, Y., Liu, J., et al. (2021) Deep Learning for Detecting Cerebral Aneurysms with CT Angiography. Radiology, 298, 155-163.
https://doi.org/10.1148/radiol.2020192154
[12]  Bradshaw, T.J., Huemann, Z., Hu, J. and Rahmim, A. (2023) A Guide to Cross-Validation for Artificial Intelligence in Medical Imaging. Radiology: Artificial Intelligence, 5, e220232.
https://doi.org/10.1148/ryai.220232
[13]  Omoumi, P. and Richiardi, J. (2024) Independent Evaluation of Commercial Diagnostic AI Solutions: A Necessary Step toward Increased Transparency. Radiology, 310, e233299.
https://doi.org/10.1148/radiol.233299
[14]  Obuchowski, N.A. and Bullen, J. (2022) Multireader Diagnostic Accuracy Imaging Studies: Fundamentals of Design and Analysis. Radiology, 303, 26-34.
https://doi.org/10.1148/radiol.211593
[15]  Rajpurkar, P., Chen, E., Banerjee, O. and Topol, E.J. (2022) AI in Health and Medicine. Nature Medicine, 28, 31-38.
https://doi.org/10.1038/s41591-021-01614-0
[16]  Bennani, S., Regnard, N., Ventre, J., Lassalle, L., Nguyen, T., Ducarouge, A., et al. (2023) Using AI to Improve Radiologist Performance in Detection of Abnormalities on Chest Radiographs. Radiology, 309, e230860.
https://doi.org/10.1148/radiol.230860
[17]  van Dam-Nolen, D.H.K., Truijman, M.T.B., van der Kolk, A.G., Liem, M.I., Schreuder, F.H.B.M., Boersma, E., et al. (2022) Carotid Plaque Characteristics Predict Recurrent Ischemic Stroke and TIA: The PARISK (Plaque at RISK) Study. JACC: Cardiovascular Imaging, 15, 1715-1726.
https://doi.org/10.1016/j.jcmg.2022.04.003
[18]  Perera, K.S., Swaminathan, B., Veltkamp, R., Arauz, A., Ameriso, S., Marti-Fabregas, J., et al. (2018) Frequency and Features of Embolic Stroke of Undetermined Source in Young Adults. European Stroke Journal, 3, 110-116.
https://doi.org/10.1177/2396987318755585
[19]  Ekker, M.S., Boot, E.M., Singhal, A.B., Tan, K.S., Debette, S., Tuladhar, A.M., et al. (2018) Epidemiology, Aetiology, and Management of Ischaemic Stroke in Young Adults. The Lancet Neurology, 17, 790-801.
https://doi.org/10.1016/s1474-4422(18)30233-3
[20]  Aslam, A., Khan, U., Niazi, F. and Anwar, I. (2022) Etiology and Risk Factors of Stroke in Young Adults: A Multicentric Study. Annals of Medicine & Surgery, 82, Article ID: 104647.
https://doi.org/10.1016/j.amsu.2022.104647
[21]  Lodh, M., Goswami, B., Parida, A., Patra, S. and Saxena, A. (2012) Assessment of Serum Leptin, Pregnancy-Associated Plasma Protein A and CRP Levels as Indicators of Plaque Vulnerability in Patients with Acute Coronary Syndrome. Cardiovascular Journal of Africa, 23, 330-335.
https://doi.org/10.5830/cvja-2012-008
[22]  Wang, B., Dong, L. and Qi, Z. (2022) Carotid Plaque Vulnerability Assessed by Contrast-Enhanced Ultrasound and Clinical Risk Factors. Journal of Stroke and Cerebrovascular Diseases, 31, Article ID: 106598.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106598
[23]  Geisler, T., Poli, S., Meisner, C., Schreieck, J., Zuern, C.S., Nägele, T., et al. (2016) Apixaban for Treatment of Embolic Stroke of Undetermined Source (ATTICUS Randomized Trial): Rationale and Study Design. International Journal of Stroke, 12, 985-990.
https://doi.org/10.1177/1747493016681019
[24]  Diener, H., Sacco, R.L., Easton, J.D., Granger, C.B., Bernstein, R.A., Uchiyama, S., et al. (2019) Dabigatran for Prevention of Stroke after Embolic Stroke of Undetermined Source. New England Journal of Medicine, 380, 1906-1917.
https://doi.org/10.1056/nejmoa1813959
[25]  Marinheiro, G., Araújo, B., Rivera, A., Monteiro, G.d.A., Santana, L.S., Leite, M., et al. (2024) Direct Oral Anticoagulants in Embolic Stroke of Undetermined Source: An Updated Meta-Analysis. Journal of Thrombosis and Thrombolysis, 57, 1163-1171.
https://doi.org/10.1007/s11239-024-03017-7
[26]  Hart, R.G., Sharma, M., Mundl, H., Kasner, S.E., Bangdiwala, S.I., Berkowitz, S.D., et al. (2018) Rivaroxaban for Stroke Prevention after Embolic Stroke of Undetermined Source. New England Journal of Medicine, 378, 2191-2201.
https://doi.org/10.1056/nejmoa1802686

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133