|
瘤内及瘤周CT影像组学特征预测软骨肉瘤预后的研究
|
Abstract:
目的:建立基于CT影像组学的软骨肉瘤瘤内、瘤周以及瘤内瘤周联合的影像组学模型,并评价其对患者无进展生存期(PFS)预测的效能。方法:回顾性收集2009年1月至2023年1月期间诊断为软骨肉瘤的患者,并将来自两个中心的212例软骨肉瘤患者分为训练组(n = 101)和验证组(n = 111)。从CT图像中提取瘤内和瘤周的影像组学特征,分别构建瘤内、瘤周和联合的影像组学模型,并计算其影像组学评分(Rad-score)。通过C指数、受者工作特征曲线下时间依赖面积(AUC)和时间依赖C指数来评估瘤内、瘤周和联合影像组学特征在预测软骨肉瘤患者无进展生存期中的作用。结果:分别使用了11、7和16个影像组学特征来构建瘤内、瘤周和联合影像组学模型。联合影像组学模型表现出最好的预测效能。该模型在训练组中C指数为0.788 (95%置信区间0.711~0.861),验证组中C指数为0.750 (95%置信区间0.623~0.867)。结论:联合瘤内和瘤周的CT影像组学特征可以更好地预测软骨肉瘤患者的无进展生存期,有助于临床医生为软骨肉瘤患者选择个性化的监测和治疗方案。
Objective: To establish radiomic models based on intratumoral, peritumoral, and combined intratumoral-peritumoral features derived from CT imaging for chondrosarcoma, and to evaluate their efficacy in predicting progression-free survival (PFS) in patients. Methods: A retrospective collection of patients diagnosed with chondrosarcoma from January 2009 to January 2023 was conducted. A total of 212 patients with chondrosarcoma from two centers were divided into a training cohort (n = 101) and a validation cohort (n = 111). Radiomic features from intratumoral and peritumoral regions were extracted from CT images to construct separate intratumoral, peritumoral, and combined radiomic models, and to calculate their radiomic scores (Rad-score). The roles of intratumoral, peritumoral, and combined radiomic features in predicting PFS in chondrosarcoma patients were assessed using the C-index, time-dependent area under the receiver operating characteristic curve (AUC), and time-dependent C-index. Results: Eleven, seven, and sixteen radiomic features were used to construct the intratumoral, peritumoral, and combined radiomic models, respectively. The combined radiomic model demonstrated the best predictive performance. The C-index for this model was 0.788 (95% confidence interval 0.711~0.861) in the training cohort and 0.750 (95% confidence interval 0.623~0.867) in the validation cohort. Conclusion: The combined intratumoral and peritumoral CT radiomic features can better predict PFS in patients with chondrosarcoma, aiding clinicians in selecting personalized monitoring and treatment plans for these patients.
[1] | Tong, Y., Cui, Y., Jiang, L., Pi, Y., Gong, Y. and Zhao, D. (2022) Clinical Characteristics, Prognostic Factor and a Novel Dynamic Prediction Model for Overall Survival of Elderly Patients with Chondrosarcoma: A Population-Based Study. Frontiers in Public Health, 10, Article ID: 901680. https://doi.org/10.3389/fpubh.2022.901680 |
[2] | Italiano, A., Mir, O., Cioffi, A., Palmerini, E., Piperno-Neumann, S., Perrin, C., et al. (2013) Advanced Chondrosarcomas: Role of Chemotherapy and Survival. Annals of Oncology, 24, 2916-2922. https://doi.org/10.1093/annonc/mdt374 |
[3] | de Jong, Y., Ingola, M., Briaire-de Bruijn, I.H., Kruisselbrink, A.B., Venneker, S., Palubeckaite, I., et al. (2019) Radiotherapy Resistance in Chondrosarcoma Cells; a Possible Correlation with Alterations in Cell Cycle Related Genes. Clinical Sarcoma Research, 9, Article No. 9. https://doi.org/10.1186/s13569-019-0119-0 |
[4] | Laitinen, M.K., Parry, M.C., Le Nail, L., Wigley, C.H., Stevenson, J.D. and Jeys, L.M. (2019) Locally Recurrent Chondrosarcoma of the Pelvis and Limbs Can Only Be Controlled by Wide Local Excision. The Bone & Joint Journal, 101, 266-271. https://doi.org/10.1302/0301-620x.101b3.bjj-2018-0881.r1 |
[5] | Björnsson, J., McLeod, R.A., Unni, K.K., Ilstrup, D.M. and Pritchard, D.J. (1998) Primary Chondrosarcoma of Long Bones and Limb Girdles. Cancer, 83, 2105-2119. https://doi.org/10.1002/(sici)1097-0142(19981115)83:10<2105::aid-cncr9>3.0.co;2-u |
[6] | Bruns, J., Elbracht, M. and Niggemeyer, O. (2001) Chondrosarcoma of Bone: An Oncological and Functional Follow-Up Study. Annals of Oncology, 12, 859-864. https://doi.org/10.1023/a:1011162118869 |
[7] | Lee, F.Y., Mankin, H.J., Fondren, G., Gebhardt, M.C., springfield, D.S., Rosenberg, A.E., et al. (1999) Chondrosarcoma of Bone: An Assessment of Outcome. The Journal of Bone & Joint Surgery, 81, 326-338. https://doi.org/10.2106/00004623-199903000-00004 |
[8] | Yan, L., Gao, N., Ai, F., Zhao, Y., Kang, Y., Chen, J., et al. (2022) Deep Learning Models for Predicting the Survival of Patients with Chondrosarcoma Based on a Surveillance, Epidemiology, and End Results Analysis. Frontiers in Oncology, 12, Article ID: 967758. https://doi.org/10.3389/fonc.2022.967758 |
[9] | Song, K., Shi, X., Wang, H., Zou, F., Lu, F., Ma, X., et al. (2018) Can a Nomogram Help to Predict the Overall and Cancer-Specific Survival of Patients with Chondrosarcoma? Clinical Orthopaedics & Related Research, 476, 987-996. https://doi.org/10.1007/s11999.0000000000000152 |
[10] | Liu, C., Xi, Y., Li, M., Jiao, Q., Zhang, H., Yang, Q., et al. (2017) Dedifferentiated Chondrosarcoma: Radiological Features, Prognostic Factors and Survival Statistics in 23 Patients. PLOS ONE, 12, e0173665. https://doi.org/10.1371/journal.pone.0173665 |
[11] | Soldatos, T., McCarthy, E.F., Attar, S., Carrino, J.A. and Fayad, L.M. (2011) Imaging Features of Chondrosarcoma. Journal of Computer Assisted Tomography, 35, 504-511. https://doi.org/10.1097/rct.0b013e31822048ff |
[12] | Jurik, A., Jensen, O., Keller, J., Nielsen, O., Lundorf, E., Daugaard, S., et al. (1995) Imaging of Chondrosarcoma with Histopathological and Prognostic Correlation. An Analysis of 49 Cases Mainly Based on Plain Film Radiography. Rofo, 163, 372-377. https://doi.org/10.1055/s-2007-1016011 |
[13] | Bi, W.L., Hosny, A., Schabath, M.B., Giger, M.L., Birkbak, N.J., Mehrtash, A., et al. (2019) Artificial Intelligence in Cancer Imaging: Clinical Challenges and Applications. CA: A Cancer Journal for Clinicians, 69, 127-157. https://doi.org/10.3322/caac.21552 |
[14] | Qiu, H., Xu, M., Wang, Y., Wen, X., Chen, X., Liu, W., Zhang, N., Ding, X. and Zhang, L. (2022) A Novel Preoperative MRI-Based Radiomics Nomogram Outperforms Traditional Models for Prognostic Prediction in Pancreatic Ductal Adenocarcinoma. American Journal of Cancer Research, 12, 2032-2049. |
[15] | Liu, X., Li, Y., Qian, Z., Sun, Z., Xu, K., Wang, K., et al. (2018) A Radiomic Signature as a Non-Invasive Predictor of Progression-Free Survival in Patients with Lower-Grade Gliomas. NeuroImage: Clinical, 20, 1070-1077. https://doi.org/10.1016/j.nicl.2018.10.014 |
[16] | Rizzo, S., Manganaro, L., Dolciami, M., Gasparri, M.L., Papadia, A. and Del Grande, F. (2021) Computed Tomography Based Radiomics as a Predictor of Survival in Ovarian Cancer Patients: A Systematic Review. Cancers, 13, Article No. 573. https://doi.org/10.3390/cancers13030573 |
[17] | Mayerhoefer, M.E., Materka, A., Langs, G., Häggström, I., Szczypiński, P., Gibbs, P., et al. (2020) Introduction to Radiomics. Journal of Nuclear Medicine, 61, 488-495. https://doi.org/10.2967/jnumed.118.222893 |
[18] | de Visser, K.E. and Joyce, J.A. (2023) The Evolving Tumor Microenvironment: From Cancer Initiation to Metastatic Outgrowth. Cancer Cell, 41, 374-403. https://doi.org/10.1016/j.ccell.2023.02.016 |
[19] | Jiang, K., Wu, J., Wang, Q., Chen, X., Zhang, Y., Gu, X., et al. (2024) Nanoparticles Targeting the Adenosine Pathway for Cancer Immunotherapy. Journal of Materials Chemistry B, 12, 5787-5811. https://doi.org/10.1039/d4tb00292j |
[20] | Dercle, L., Lu, L., Schwartz, L.H., Qian, M., Tejpar, S., Eggleton, P., et al. (2020) Radiomics Response Signature for Identification of Metastatic Colorectal Cancer Sensitive to Therapies Targeting EGFR Pathway. JNCI: Journal of the National Cancer Institute, 112, 902-912. https://doi.org/10.1093/jnci/djaa017 |
[21] | Afshar, P., Mohammadi, A., Tyrrell, P.N., Cheung, P., Sigiuk, A., Plataniotis, K.N., et al. (2020) DRTOP: Deep Learning-Based Radiomics for the Time-to-Event Outcome Prediction in Lung Cancer. Scientific Reports, 10, Article No. 12366. https://doi.org/10.1038/s41598-020-69106-8 |
[22] | Hosny, A., Parmar, C., Coroller, T.P., Grossmann, P., Zeleznik, R., Kumar, A., et al. (2018) Deep Learning for Lung Cancer Prognostication: A Retrospective Multi-Cohort Radiomics Study. PLOS Medicine, 15, e1002711. https://doi.org/10.1371/journal.pmed.1002711 |
[23] | Gitto, S., Cuocolo, R., van Langevelde, K., van de Sande, M.A.J., Parafioriti, A., Luzzati, A., et al. (2022) MRI Radiomics-Based Machine Learning Classification of Atypical Cartilaginous Tumour and Grade II Chondrosarcoma of Long Bones. eBioMedicine, 75, Article ID: 103757. https://doi.org/10.1016/j.ebiom.2021.103757 |
[24] | Li, L., Wang, K., Ma, X., Liu, Z., Wang, S., Du, J., et al. (2019) Radiomic Analysis of Multiparametric Magnetic Resonance Imaging for Differentiating Skull Base Chordoma and Chondrosarcoma. European Journal of Radiology, 118, 81-87. https://doi.org/10.1016/j.ejrad.2019.07.006 |
[25] | Pan, J., Zhang, K., Le, H., Jiang, Y., Li, W., Geng, Y., et al. (2021) Radiomics Nomograms Based on Non‐Enhanced MRI and Clinical Risk Factors for the Differentiation of Chondrosarcoma from Enchondroma. Journal of Magnetic Resonance Imaging, 54, 1314-1323. https://doi.org/10.1002/jmri.27690 |
[26] | Yin, P., Mao, N., Liu, X., Sun, C., Wang, S., Chen, L., et al. (2019) Can Clinical Radiomics Nomogram Based on 3D Multiparametric MRI Features and Clinical Characteristics Estimate Early Recurrence of Pelvic Chondrosarcoma? Journal of Magnetic Resonance Imaging, 51, 435-445. https://doi.org/10.1002/jmri.26834 |
[27] | Li, M., Li, X., Guo, Y., Miao, Z., Liu, X., Guo, S., et al. (2020) Development and Assessment of an Individualized Nomogram to Predict Colorectal Cancer Liver Metastases. Quantitative Imaging in Medicine and Surgery, 10, 397-414. https://doi.org/10.21037/qims.2019.12.16 |
[28] | Koo, T.K. and Li, M.Y. (2016) A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15, 155-163. https://doi.org/10.1016/j.jcm.2016.02.012 |
[29] | Heck, R.K., Peabody, T.D. and Simon, M.A. (2006) Staging of Primary Malignancies of Bone. CA: A Cancer Journal for Clinicians, 56, 366-375. https://doi.org/10.3322/canjclin.56.6.366 |
[30] | Chow, W.A. (2007) Update on Chondrosarcomas. Current Opinion in Oncology, 19, 371-376. https://doi.org/10.1097/cco.0b013e32812143d9 |
[31] | Frezza, A.M., Cesari, M., Baumhoer, D., Biau, D., Bielack, S., Campanacci, D.A., et al. (2015) Mesenchymal Chondrosarcoma: Prognostic Factors and Outcome in 113 Patients. A European Musculoskeletal Oncology Society Study. European Journal of Cancer, 51, 374-381. https://doi.org/10.1016/j.ejca.2014.11.007 |
[32] | Wang, Z., Chen, G., Chen, X., Huang, X., Liu, M., Pan, W., et al. (2019) Predictors of the Survival of Patients with Chondrosarcoma of Bone and Metastatic Disease at Diagnosis. Journal of Cancer, 10, 2457-2463. https://doi.org/10.7150/jca.30388 |
[33] | Braman, N., Prasanna, P., Whitney, J., Singh, S., Beig, N., Etesami, M., et al. (2019) Association of Peritumoral Radiomics with Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer. JAMA Network Open, 2, e192561. https://doi.org/10.1001/jamanetworkopen.2019.2561 |
[34] | Polyak, K., Haviv, I. and Campbell, I.G. (2009) Co-Evolution of Tumor Cells and Their Microenvironment. Trends in Genetics, 25, 30-38. https://doi.org/10.1016/j.tig.2008.10.012 |
[35] | Faget, J., Groeneveld, S., Boivin, G., Sankar, M., Zangger, N., Garcia, M., et al. (2017) Neutrophils and Snail Orchestrate the Establishment of a Pro-Tumor Microenvironment in Lung Cancer. Cell Reports, 21, 3190-3204. https://doi.org/10.1016/j.celrep.2017.11.052 |
[36] | Hu, Y., Xie, C., Yang, H., Ho, J.W.K., Wen, J., Han, L., et al. (2020) Assessment of Intratumoral and Peritumoral Computed Tomography Radiomics for Predicting Pathological Complete Response to Neoadjuvant Chemoradiation in Patients with Esophageal Squamous Cell Carcinoma. JAMA Network Open, 3, e2015927. https://doi.org/10.1001/jamanetworkopen.2020.15927 |
[37] | Braman, N.M., Etesami, M., Prasanna, P., Dubchuk, C., Gilmore, H., Tiwari, P., et al. (2017) Intratumoral and Peritumoral Radiomics for the Pretreatment Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy Based on Breast DCE-MRI. Breast Cancer Research, 19, 57. https://doi.org/10.1186/s13058-017-0846-1 |
[38] | Shan, Q., Hu, H., Feng, S., Peng, Z., Chen, S., Zhou, Q., et al. (2019) CT-Based Peritumoral Radiomics Signatures to Predict Early Recurrence in Hepatocellular Carcinoma after Curative Tumor Resection or Ablation. Cancer Imaging, 19, Article No. 11. https://doi.org/10.1186/s40644-019-0197-5 |
[39] | Akinci D'Antonoli, T., Farchione, A., Lenkowicz, J., Chiappetta, M., Cicchetti, G., Martino, A., et al. (2020) CT Radiomics Signature of Tumor and Peritumoral Lung Parenchyma to Predict Nonsmall Cell Lung Cancer Postsurgical Recurrence Risk. Academic Radiology, 27, 497-507. https://doi.org/10.1016/j.acra.2019.05.019 |
[40] | Khorrami, M., Jain, P., Bera, K., Alilou, M., Thawani, R., Patil, P., et al. (2019) Predicting Pathologic Response to Neoadjuvant Chemoradiation in Resectable Stage III Non-Small Cell Lung Cancer Patients Using Computed Tomography Radiomic Features. Lung Cancer, 135, 1-9. https://doi.org/10.1016/j.lungcan.2019.06.020 |
[41] | Chong, H., Gong, Y., Pan, X., Liu, A., Chen, L., Yang, C., et al. (2021) Peritumoral Dilation Radiomics of Gadoxetate Disodium-Enhanced MRI Excellently Predicts Early Recurrence of Hepatocellular Carcinoma without Macrovascular Invasion after Hepatectomy. Journal of Hepatocellular Carcinoma, 8, 545-563. https://doi.org/10.2147/jhc.s309570 |