全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

介质层材料对纳米银夹层结构光学性能的影响
Effect of Dielectric Layer Materials on the Optical Properties of Nano-Silver Sandwich Structures

DOI: 10.12677/ms.2025.153056, PP. 505-515

Keywords: 纳米银颗粒,光学常数,夹层结构
Silver Nanoparticles
, Optical Constant, Sandwich Structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

纳米银颗粒在可见光波段具有波长可调的吸收,在光学薄膜设计领域具有重要的应用价值,已引起广泛关注,然而,在不同介质层夹层结构中,纳米Ag颗粒的光学性质有所差异,但是夹层结构中纳米Ag颗粒的光学常数缺乏研究和对比。本文通过采用不同的介质层,利用介质层的介电性质对纳米银形貌以及其介电环境的影响,探究了SiN/AgNPs/SiN、ZnAlO/AgNPs/ZnAlO、ZnSnO/AgNPs/ZnSnO、TiOx/AgNPs/TiOx四种纳米银夹层结构的光吸收行为。结果表明纳米Ag颗粒在ZnSnO、ZnAlO、TiO夹层中的吸收峰可见光区,并且吸收强度较小,在SiN夹层中的吸收峰为位于565 nm处的宽峰。对四种夹层结构进行退火并对比吸收的变化,发现SiN夹层的热稳定性最好;在SiN夹层结构中,随着Ag层溅射厚度的增加,吸收峰红移并且吸收强度增大。本文对不同介质层材料中纳米Ag光吸收变化进行了简要分析,并拟合出夹层结构中纳米Ag层的光学常数,为纳米银夹层结构应用于薄膜光学设计提供了实验依据。
Nanoscale silver particles exhibit wavelength-tunable absorption in the visible light spectrum, which endows them with significant potential application in the field of optical thin-film design and has attracted extensive attention. However, the optical properties of nanoscale Ag particles vary in different interlayer structures, yet there is a lack of research and comparison on the optical constants of nanoscale Ag particles in interlayer structures. In this study, the influence of the dielectric properties on the morphology of nanoscale silver and its light absorption behavior of four types of nanoscale silver interlayer structures: SiN/AgNPs/SiN, ZnAlO/AgNPs/ZnAlO, ZnSnO/AgNPs/ZnSnO, and TiN/AgNPs/TiN. The results indicate that the absorption peaks of Ag nanoparticles in the ZnSnO, ZnAlO, and TiN interlayers are located in the visible light region, and the absorption intensity is relatively low., while in the SiN interlayers, the absorption peak was a broad peak located at 565 nm. After annealing the four interlayer structures and comparing the changes in the absorption curves, it was found that the SiN interlayer had the best thermal stability. In the SiN interlayer structure, as the thickness of the Ag layer increased, the absorption peak of the interlayer structure red-shifted and the absorption intensity increased. This paper briefly analyzed the changes in the light absorption of nanoscale Ag in different dielectric layer materials and fitted the optical constants of the Ag layer in the interlayer structures, providing support for the application of nanoscale silver interlayer structures in thin-film optical design.

References

[1]  Yang, W., Xia, B., Wang, L., Ma, S., Liang, H., Wang, D., et al. (2021) Shape Effects of Gold Nanoparticles in Photothermal Cancer Therapy. Materials Today Sustainability, 13, Article ID: 100078.
https://doi.org/10.1016/j.mtsust.2021.100078

[2]  Chahinez, D., Reji, T. and Andreas, R. (2018) Modeling of the Surface Plasmon Resonance Tunability of Silver/Gold Core-Shell Nanostructures. RSC Advances, 8, 19616-19626.
https://doi.org/10.1039/c8ra03261k

[3]  Mano, R., Han, D., Yamamoto, K., Ishimoto, S., Kamiyama, S., Takeuchi, T., et al. (2019) Tuning the Resonant Frequency of a Surface Plasmon by Double-Metallic Ag/Au Nanoparticles for High-Efficiency Green Light-Emitting Diodes. Applied Sciences, 9, Article No. 305.
https://doi.org/10.3390/app9020305

[4]  Yan, L., Yan, Y., Xu, L., Ma, R., Jiang, F. and Xu, X. (2016) Large Range Localized Surface Plasmon Resonance of Ag Nanoparticles Films Dependent of Surface Morphology. Applied Surface Science, 367, 563-568.
https://doi.org/10.1016/j.apsusc.2016.01.238

[5]  Hwang, C.S.H., Ahn, M., Lee, Y., Chung, T. and Jeong, K. (2019) Ag/Au Alloyed Nanoislands for Wafer-Level Plasmonic Color Filter Arrays. Scientific Reports, 9, Article No. 9082.
https://doi.org/10.1038/s41598-019-45689-9

[6]  Liang, L., Zhao, Y. and Feng, C. (2020) Fabrication and Ultraviolet-Visible-Near Infrared Absorption Properties of Silver Nano Arrays Based on Aluminum. Acta Physica Sinica, 69, Article ID: 065201.
https://doi.org/10.7498/aps.69.20191522

[7]  Sui, M., Kunwar, S., Pandey, P. and Lee, J. (2019) Strongly Confined Localized Surface Plasmon Resonance (LSPR) Bands of Pt, AgPt, AgAuPt Nanoparticles. Scientific Reports, 9, Article No. 16582.
https://doi.org/10.1038/s41598-019-53292-1

[8]  Minamikawa, T., Sakaguchi, R., Harada, Y., Tanioka, H., Inoue, S., Hase, H., et al. (2024) Long-Range Enhancement for Fluorescence and Raman Spectroscopy Using Ag Nanoislands Protected with Column-Structured Silica Overlayer. Light: Science & Applications, 13, Article No. 299.
https://doi.org/10.1038/s41377-024-01655-3

[9]  Gao, W., Wang, T., Zhu, C., Sha, P., Dong, P. and Wu, X. (2022) A “Sandwich” Structure for Highly Sensitive Detection of TNT Based on Surface-Enhanced Raman Scattering. Talanta, 236, Article ID: 122824.
https://doi.org/10.1016/j.talanta.2021.122824

[10]  Bulla, S.S., Bhajantri, R.F. and Chavan, C. (2021) Optical and Structural Properties of Biosynthesized Silver Nanoparticle Encapsulated PVA (Ag-PVA) Films. Journal of Inorganic and Organometallic Polymers and Materials, 31, 2368-2380.
https://doi.org/10.1007/s10904-021-01909-2

[11]  Sekrafi, H.E., Costa, D.S., Proença, M., Meira, D.I., Vaz, F. and Borges, J. (2024) Experimental and Theoretical Studies on Ag Nanoparticles with Enhanced Plasmonic Response, Formed within Al2O3 Thin Films Deposited by Magnetron Sputtering. Plasmonics, 19, 3177-3188.
https://doi.org/10.1007/s11468-024-02227-2

[12]  牛江伟, 潘永强. 采用椭偏法结合分光光度法研究极薄银的光学常数[J]. 应用光学, 2018, 39(6): 867-872.
[13]  Cho, J.Y., Jang, J.S., Karade, V.C., Nandi, R., Pawar, P.S., Seok, T., et al. (2022) Atomic-Layer-Deposited ZnSnO Buffer Layers for Kesterite Solar Cells: Impact of Zn/(Zn+Sn) Ratio on Device Performance. Journal of Alloys and Compounds, 895, Article ID: 162651.
https://doi.org/10.1016/j.jallcom.2021.162651

[14]  Song, H., Gu, P., Zhu, X., Yan, Q. and Yang, D. (2018) Study on the Electronic Structure and Optical Properties of Tin Films Based on the First-Principle. Physica B: Condensed Matter, 545, 197-202.
https://doi.org/10.1016/j.physb.2018.05.008

[15]  Li, J., Tang, J.-Y., Pei, W., Wei, X.-H. and Huang, F. (2015) Accurate Determination of Thickness Values and Optical Constants of Absorbing Thin Films on Opaque Substrates with Spectroscopic Ellipsometry. Acta Physica Sinica, 64, Article ID: 110702.
https://doi.org/10.7498/aps.64.110702

[16]  Jiménez, J.A. and Sendova, M. (2012) Kinetics of Ag Nanoparticle Growth in Thick SiO2 Films: An in Situ Optical Assessment of Ostwald Ripening. Materials Chemistry and Physics, 135, 282-286.
https://doi.org/10.1016/j.matchemphys.2012.06.022

[17]  Krasnov, A. and Uzai, L. (2023) Optical Considerations for Automotive Windshields with Improved Thermal Performance. Optical Materials, 139, Article ID: 113807.
https://doi.org/10.1016/j.optmat.2023.113807

[18]  朱旭鹏, 张轼, 石惠民. 金属表面等离激元耦合理论研究进展[J]. 物理学报, 2019, 68(24): 20-37.
[19]  Borges, J., Rodrigues, M.S., Lopes, C., Costa, D., Ferreira, A., Pereira, R.M.S., et al. (2016) Ag Fractals Formed on Top of a Porous TiO2 Thin Film. Physica Status Solidi (RRL)—Rapid Research Letters, 10, 530-534.
https://doi.org/10.1002/pssr.201600131

[20]  Gao, H., Peng, W., Cui, W., Chu, S., Yu, L. and Yang, X. (2019) Ultraviolet to Near Infrared Titanium Nitride Broadband Plasmonic Absorber. Optical Materials, 97, Article ID: 109377.
https://doi.org/10.1016/j.optmat.2019.109377

[21]  Ciesielski, A., Skowronski, L., Górecka, E., Kierdaszuk, J. and Szoplik, T. (2018) Growth Model and Structure Evolution of Ag Layers Deposited on Ge Films. Beilstein Journal of Nanotechnology, 9, 66-76.
https://doi.org/10.3762/bjnano.9.9

[22]  Fan, X., Zheng, W. and Singh, D.J. (2014) Light Scattering and Surface Plasmons on Small Spherical Particles. Light: Science & Applications, 3, e179-e179.
https://doi.org/10.1038/lsa.2014.60

[23]  Perera, T., Mallawaarachchi, S. and Premaratne, M. (2021) Chiral Plasmonic Ellipsoids: An Extended Mie-Gans Model. The Journal of Physical Chemistry Letters, 12, 11214-11219.
https://doi.org/10.1021/acs.jpclett.1c03144

[24]  Jiang, Y., Pillai, S. and Green, M.A. (2016) Realistic Silver Optical Constants for Plasmonics. Scientific Reports, 6, Article No. 30605.
https://doi.org/10.1038/srep30605

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133