全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高强韧性氢键协同Diels-Alder键热可逆聚氨酯的自修复性能研究
The Study of Self-Healing Performance of High-Toughness Hydrogen Bond Synergized Diels-Alder Reversible Thermo-Sensitive Polyurethane

DOI: 10.12677/ms.2025.153055, PP. 494-504

Keywords: 高密度氢键,Diels-Alder键,自修复聚氨酯,韧性
High Density Hydrogen Bonding
, Diels-Alder Bond, Self-Healing, High Strength and Toughness

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究通过三步扩链法将聚醚胺D230引入基于Diels-Alder (DA)键的热可逆聚氨酯,制备了一系列含高密度氢键的自修复聚氨酯材料。当nD230:nDA = 1.0:1.5时,高密度氢键和DA键协同作用使得聚氨酯材料具有优异的综合力学性能,其拉伸强度、断裂伸长率和韧性分别达到14.34 MPa、623.65%和68.87 MJ/m3。同时,还赋予聚氨酯材料优异的自修复性能。材料在120℃修复40 min后,再在60℃下保温12 h,其修复效率超过了100%,达到了103.16%。而且,材料还具有优异的多次修复能力,即使经过三次重复修复,其修复效率仍然能够达到66.12%。该研究为开发高性能自修复聚氨酯提供了一种简单且经济的途径,在电子器件、软体机器人等领域有一定的发展前景。
This study introduces polyetheramine D230 into a thermally reversible polyurethane based on Diels-Alder (DA) bonds, resulting in a series of self-healing polyurethane materials containing high-density hydrogen bonds. When the molar ratio nD230:nDA = 1.0:1.5, the synergistic effect of high-density hydrogen bonds and DA bonds endows the polyurethane with outstanding comprehensive mechanical properties, achieving a tensile strength of 14.33 MPa, an elongation at break of 623.65%, and a toughness of 68.87 MJ/m3. Moreover, the synergistic interaction between hydrogen bonding and thermally reversible DA bonds imparts excellent self-healing performance to the material. After treatment at 120?C for 40 minutes followed by maintaining at 60?C for 12 hours, complete self-healing can be achieved. Additionally, the material demonstrates exceptional multi-cycle healing capability, maintaining a healing efficiency of 66.12% even after three damage-healing cycles. This study provides a simple and cost-effective approach for developing high-performance self-healing polyurethane, with promising applications in fields such as electronic devices and soft robotics.

References

[1]  Jiang, R., Zheng, X., Zhu, S., Li, W., Zhang, H., Liu, Z., et al. (2023) Recent Advances in Functional Polyurethane Chemistry: From Structural Design to Applications. ChemistrySelect, 8, e202204132.
https://doi.org/10.1002/slct.202204132

[2]  Pan, G., Wang, Z., Kong, D., Sun, T., Zhai, H., Tian, T., et al. (2021) Transparent, Flame‐Retarded, Self‐Healable, Mechanically Strong Polyurethane Elastomers: Enabled by the Synthesis of Phosphorus/Nitrogen‐Containing Oxime Chain‐Extender. Journal of Applied Polymer Science, 139, Article ID: 51598.
https://doi.org/10.1002/app.51598

[3]  Ekeocha, J., Ellingford, C., Pan, M., Wemyss, A.M., Bowen, C. and Wan, C. (2021) Challenges and Opportunities of Self‐Healing Polymers and Devices for Extreme and Hostile Environments. Advanced Materials, 33, Article ID: 2008052.
https://doi.org/10.1002/adma.202008052

[4]  Zhang, H., Wang, D., Liu, W., Li, P., Liu, J., Liu, C., et al. (2017) Recyclable Polybutadiene Elastomer Based on Dynamic Imine Bond. Journal of Polymer Science Part A: Polymer Chemistry, 55, 2011-2018.
https://doi.org/10.1002/pola.28577

[5]  Kang, J., Tok, J.B.-. and Bao, Z. (2019) Self-Healing Soft Electronics. Nature Electronics, 2, 144-150.
https://doi.org/10.1038/s41928-019-0235-0

[6]  Feng, L., Zhao, H., He, X., Zhao, Y., Gou, L. and Wang, Y. (2019) Synthesis and Self‐healing Behavior of Thermoreversible Epoxy Resins Modified with Nitrile Butadiene Rubber. Polymer Engineering & Science, 59, 1603-1610.
https://doi.org/10.1002/pen.25158

[7]  Liu, Y. and Chuo, T. (2013) Self-Healing Polymers Based on Thermally Reversible Diels-Alder Chemistry. Polymer Chemistry, 4, 2194-2205.
https://doi.org/10.1039/c2py20957h

[8]  Chang, H., Kim, M.S., Huber, G.W. and Dumesic, J.A. (2021) Design of Closed-Loop Recycling Production of a Diels-Alder Polymer from a Biomass-Derived Difuran as a Functional Additive for Polyurethanes. Green Chemistry, 23, 9479-9488.
https://doi.org/10.1039/d1gc02865k

[9]  Perera, M.M. and Ayres, N. (2020) Dynamic Covalent Bonds in Self-Healing, Shape Memory, and Controllable Stiffness Hydrogels. Polymer Chemistry, 11, 1410-1423.
https://doi.org/10.1039/c9py01694e

[10]  Aguirresarobe, R.H., Nevejans, S., Reck, B., Irusta, L., Sardon, H., Asua, J.M., et al. (2021) Healable and Self-Healing Polyurethanes Using Dynamic Chemistry. Progress in Polymer Science, 114, Article ID: 101362.
https://doi.org/10.1016/j.progpolymsci.2021.101362

[11]  Feng, L., Yu, Z., Bian, Y., Lu, J., Shi, X. and Chai, C. (2017) Self-Healing Behavior of Polyurethanes Based on Dual Actions of Thermo-Reversible Diels-Alder Reaction and Thermal Movement of Molecular Chains. Polymer, 124, 48-59.
https://doi.org/10.1016/j.polymer.2017.07.049

[12]  Tu, H., Zhou, M., Gu, Y. and Gu, Y. (2022) Conductive, Self-Healing, and Repeatable Graphene/Carbon Nanotube/Polyurethane Flexible Sensor Based on Diels-Alder Chemothermal Drive. Composites Science and Technology, 225, Article ID: 109476.
https://doi.org/10.1016/j.compscitech.2022.109476

[13]  Princi, E., Vicini, S., Castro, K., Capitani, D., Proietti, N. and Mannina, L. (2009) On the Micro‐Phase Separation in Waterborne Polyurethanes. Macromolecular Chemistry and Physics, 210, 879-889.
https://doi.org/10.1002/macp.200900013

[14]  Xi, J. and Wang, N. (2024) Synthesis of High Mechanical Strength and Thermally Recyclable and Reversible Polyurethane Adhesive by Diels-Alder Reaction. Macromolecular Chemistry and Physics, 225, Article ID: 2400199.
https://doi.org/10.1002/macp.202400199

[15]  Yang, Z., Wang, J., Li, G., Gu, X., Yang, H., Tang, Q., et al. (2024) A Room‐Temperature Self‐Healing Anticorrosion Coating of Supramolecular Polyurethane Based on Dynamic Reversible Quadruple Hydrogen Bond. Journal of Applied Polymer Science, 141, e55441.
https://doi.org/10.1002/app.55441

[16]  Yoshida, S., Ejima, H. and Yoshie, N. (2017) Tough Elastomers with Superior Self‐Recoverability Induced by Bioinspired Multiphase Design. Advanced Functional Materials, 27, Article ID: 1701670.
https://doi.org/10.1002/adfm.201701670

[17]  Chen, J., Li, F., Luo, Y., Shi, Y., Ma, X., Zhang, M., et al. (2019) A Self-Healing Elastomer Based on an Intrinsic Non-Covalent Cross-Linking Mechanism. Journal of Materials Chemistry A, 7, 15207-15214.
https://doi.org/10.1039/c9ta03775f

[18]  Fu, Z., Guo, S., Li, C., Wang, K., Zhang, Q. and Fu, Q. (2022) Hydrogen-Bond-Dominated Mechanical Stretchability in PVA Films: From Phenomenological to Numerical Insights. Physical Chemistry Chemical Physics, 24, 1885-1895.
https://doi.org/10.1039/d1cp03893a

[19]  Luo, Y.Z., Wang, X.Y. and Ying, Y. (1997) Hydrogen-Bonding Properties of Segmented Polyether Poly(urethane Urea) Copolymer. Macromolecules, 30, 4405-4409.
https://doi.org/10.1021/ma951386e

[20]  Cash, J.J., Kubo, T., Bapat, A.P. and Sumerlin, B.S. (2015) Room-temperature Self-Healing Polymers Based on Dynamic-Covalent Boronic Esters. Macromolecules, 48, 2098-2106.
https://doi.org/10.1021/acs.macromol.5b00210

[21]  Xu, J., Wang, X., Zhang, X., Zhang, Y., Yang, Z., Li, S., et al. (2023) Room-temperature Self-Healing Supramolecular Polyurethanes Based on the Synergistic Strengthening of Biomimetic Hierarchical Hydrogen-Bonding Interactions and Coordination Bonds. Chemical Engineering Journal, 451, Article ID: 138673.
https://doi.org/10.1016/j.cej.2022.138673

[22]  An, Z., Xue, R., Ye, K., Zhao, H., Liu, Y., Li, P., et al. (2023) Recent Advances in Self-Healing Polyurethane Based on Dynamic Covalent Bonds Combined with Other Self-Healing Methods. Nanoscale, 15, 6505-6520.
https://doi.org/10.1039/d2nr07110j

[23]  Ye, J., Zhang, J., Feng, L., Liu, H., Zhu, D. and Liu, Y. (2024) Polyurethane Combining Preeminent Toughness, Puncture-Resistance, and Self-Healing Capabilities by Multiple Repair Options Based on Dual Dynamic Covalent Bonds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 694, Article ID: 134203.
https://doi.org/10.1016/j.colsurfa.2024.134203

[24]  Yeh, C., Lin, C., Han, T., Xiao, Y., Chen, Y. and Chou, H. (2021) Disulfide Bond and Diels-Alder Reaction Bond Hybrid Polymers with High Stretchability, Transparency, Recyclability, and Intrinsic Dual Healability for Skin-Like Tactile Sensing. Journal of Materials Chemistry A, 9, 6109-6116.
https://doi.org/10.1039/d0ta10135d

[25]  Zeng, W., Deng, L. and Yang, G. (2023) Self‐healable Elastomeric Network with Dynamic Disulfide, Imine, and Hydrogen Bonds for Flexible Strain Sensor. ChemistryA European Journal, 29, e202203478.
https://doi.org/10.1002/chem.202203478

[26]  Mottoul, M., Giljean, S., Pac, M., Landry, V. and Morin, J. (2023) Self‐Healing Polyacrylate Coatings with Dynamic H‐bonds between Urea Groups. Journal of Applied Polymer Science, 140, e53853.
https://doi.org/10.1002/app.53853

[27]  Ye, J., Chen, S., Feng, L., Zhang, J., Liu, Y. and Zhu, D. (2024) Multi-Responsive Self-Healing Behavior of Polyurethane Modified with Photothermal and Microwave Conversion Nanoparticles. European Polymer Journal, 213, Article ID: 113080.
https://doi.org/10.1016/j.eurpolymj.2024.113080

[28]  Martin, R., Rekondo, A., Ruiz de Luzuriaga, A., Cabañero, G., Grande, H.J. and Odriozola, I. (2014) The Processability of a Poly(urea-Urethane) Elastomer Reversibly Crosslinked with Aromatic Disulfide Bridges. Journal of Materials Chemistry A, 2, 5710.
https://doi.org/10.1039/c3ta14927g

[29]  Ke, X., Liang, H., Xiong, L., Huang, S. and Zhu, M. (2016) Synthesis, Curing Process and Thermal Reversible Mechanism of UV Curable Polyurethane Based on Diels-Alder Structure. Progress in Organic Coatings, 100, 63-69.
https://doi.org/10.1016/j.porgcoat.2016.03.008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133