|
Material Sciences 2025
高渗透氧化铝陶瓷膜的制备与表征
|
Abstract:
用甲基纤维素作粘结剂,硅烷偶联剂作粘结助剂,聚丙烯酸作分散剂,设计了一种新涂膜液,通过一步法浸渍涂膜,直接在大孔管状支撑体上制备了一种无中间层氧化铝陶瓷膜,省去了中间过渡层,缩短了制备时间,降低了生产成本。采用傅里叶变换红外光谱仪分析涂膜液成分的作用机理,结果表明:硅烷偶联剂KH-550与甲基纤维素的氢键作用使涂膜液的稳定性得到增强。通过扫描电子显微镜、比表面积与孔径、孔隙率和纯水渗透通量测试,研究了陶瓷膜的显微结构和性能。用本研究设计的涂膜液制备的陶瓷膜,膜层厚度约为35 μm,平均孔半径约为0.285 μm,纯水渗透通量高达1990 L m?2 h?1 bar?1。通过一步法成功制备出无中间过渡层的陶瓷膜,节省了制备时间和成本,并提高了渗透通量。本研究对于低成本制备高性能陶瓷膜有一定的参考价值。
A new coating solution was designed by using methyl cellulose as binder, silane coupling agent as binder and polyacrylic acid as dispersant. A kind of alumina ceramic membrane without intermediate layer was prepared directly on the macroporous tubular support by one-step impregnation coating. The intermediate transition layer was omitted, the preparation time was shortened and the production cost was reduced. The mechanism of the composition of the coating solution was analyzed by Fourier transform infrared spectroscopy. The results showed that the hydrogen bond between silane coupling agent KH-550 and methyl cellulose enhanced the stability of the coating solution. The microstructure and properties of the ceramic membranes were studied by scanning electron microscopy, specific surface area and pore size, porosity and pure water permeation flux tests. The ceramic membrane prepared with the coating solution designed in this study has a membrane thickness of about 35 μm, an average pore radius of about 0.285 μm, and a pure water permeation flux of up to 1990 L m?2 h?1 bar?1. The ceramic membrane without intermediate transition layer was successfully prepared by one-step method, which saved the preparation time and cost, and improved the permeation flux. This study has a certain reference value for the preparation of high-performance ceramic membranes at low cost.
[1] | Zhang, C., Yuan, R., Chen, H., Zhou, B., Cui, Z. and Zhu, B. (2024) Advancements in Inorganic Membrane Filtration Coupled with Advanced Oxidation Processes for Wastewater Treatment. Molecules, 29, Article No. 4267. https://doi.org/10.3390/molecules29174267 |
[2] | Lin, Z., Liu, L., Zhang, C., Su, P., Zhang, X., Li, X., et al. (2024) Emerging Conductive Ceramic Membranes for Water Purification and Membrane Fouling Mitigation. Chemical Engineering Journal, 493, Article ID: 152474. https://doi.org/10.1016/j.cej.2024.152474 |
[3] | Satyannarayana, K.V.V., Singh, R., Rani, S.L.S., Sreekanth, M., Raja, V.K. and Ahn, Y. (2024) A Paradigm Assessment of Low-Cost Ceramic Membranes: Raw Materials, Fabrication Techniques, Cost Analysis, Environment Impact, Wastewater Treatment, Fouling, and Future Prospects. Journal of Water Process Engineering, 68, Article ID: 106430. https://doi.org/10.1016/j.jwpe.2024.106430 |
[4] | Hang, F., Xu, H., Xie, C., Li, K., Wen, T. and Meng, L. (2024) Pretreatment of Glucose-Fructose Syrup with Ceramic Membrane Ultrafiltration Coupled with Activated Carbon. Membranes, 14, Article No. 57. https://doi.org/10.3390/membranes14030057 |
[5] | Satyannarayana, K.V.V., Kumar, R.V., Mathaji, C.B., Singh, R., Ahn, Y. and Chen, S. (2023) Ceramic Membranes for Citrus Fruit Juice Clarification: A Systematic Review. ChemBioEng Reviews, 10, 737-755. https://doi.org/10.1002/cben.202200048 |
[6] | Zhao, T., Liu, X., Huai, L., Feng, R., Yan, T., Xu, W., et al. (2024) Fabrication of the TiO2/Ti3C2 Loaded Ceramic Membrane Targeting for Photocatalytic Degradation of PPCPS: Ciprofloxacin, Tetracycline, and Ibuprofen. Frontiers of Environmental Science & Engineering, 18, Article No. 123. https://doi.org/10.1007/s11783-024-1883-5 |
[7] | Kamgang-Syapnjeu, P., Njoya, D., Kamseu, E., Balme, S., Bechelany, M. and Soussan, L. (2022) Bio-Based Ceramic Membranes for Bacteria Removal from Water. Membranes, 12, Article No. 901. https://doi.org/10.3390/membranes12090901 |
[8] | Miao, K., Song, Y., Guan, K., Liu, J., Matsuyama, H., Zou, D., et al. (2024) Robust Hydrophobic Ceramic Membrane for High-Salinity Wastewater Separation via Membrane Distillation. Desalination, 592, Article ID: 118091. https://doi.org/10.1016/j.desal.2024.118091 |
[9] | Han, Y., Zou, D., Kang, Y., Zhong, Z. and Xing, W. (2024) One-Step Sintering Process for High-Performance Sic Membranes for Efficient Filtration of Dust-Laden Gas. Journal of Membrane Science, 692, Article ID: 122265. https://doi.org/10.1016/j.memsci.2023.122265 |
[10] | Wang, Q., Zhou, R. and Tsuru, T. (2022) Recent Progress in Silicon Carbide-Based Membranes for Gas Separation. Membranes, 12, Article No. 1255. https://doi.org/10.3390/membranes12121255 |
[11] | Zhang, N., Dong, H., Wang, Y., Yuan, C., Wang, R., Sun, H., et al. (2024) Sacrificial GO-BD Interlayer for High Performance Ceramic Ultrafiltration Membrane. Materials Today Communications, 38, Article ID: 107730. https://doi.org/10.1016/j.mtcomm.2023.107730 |
[12] | Yin, Y., Wang, M., Shi, Y. and Zhang, H. (2023) Midcourse Correction of Earth-Moon Distant Retrograde Orbit Transfer Trajectories Based on High-Order State Transition Tensors. Astrodynamics, 7, 335-349. https://doi.org/10.1007/s42064-023-0162-8 |
[13] | Agarwalla, A. and Mohanty, K. (2024) Fabrication and Characterization of Low-Cost Kaolin Based Tubular Ceramic Membrane for Microalgal Harvesting. Journal of Environmental Chemical Engineering, 12, Article ID: 112089. https://doi.org/10.1016/j.jece.2024.112089 |
[14] | Sawunyama, L., Oyewo, O.A., Bopape, M.F. and Onwudiwe, D.C. (2024) Fabrication and Characterization of Low-Cost Ceramic Membranes from Coal Fly Ash and Natural Sand. Sustainable Chemistry for the Environment, 8, Article ID: 100165. https://doi.org/10.1016/j.scenv.2024.100165 |
[15] | Saxena, A.K.S., Soni, A.B. and Jayapal, A. (2024) Optimization of Ceramic Membrane Fabricated from Coal Flyash Blended with Natural Clay for Separation of Kraft Lignin from Aqueous Solutions. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-024-05876-9 |
[16] | Gao, J., Yan, Z., Wang, B., Ma, Z. and Guo, Y. (2024) Preparation of Whisker Mullite Ceramic Membrane from Coal Fly Ash for Efficient Oil-Water Separation. Ceramics International, 50, 32727-32736. https://doi.org/10.1016/j.ceramint.2024.06.082 |
[17] | Liu, K., Zhang, M., Li, M. and Tong, Z. (2024) Preparation and Application of Microfiltration Porous Coal Gangue-loess‐Based Ceramic Membrane. International Journal of Applied Ceramic Technology, 21, 1941-1953. https://doi.org/10.1111/ijac.14649 |
[18] | Boutaleb, M., Tabit, K., Mansori, M., Saâdi, L. and Waqif, M. (2024) Development of Low-Cost Clayey Ceramic Filtering Membrane with Controllable Porosity and High Mechanical Strength. Ceramics International, 50, 32771-32782. https://doi.org/10.1016/j.ceramint.2024.06.087 |
[19] | 秦伍, 张翼. 预封孔法制备高渗透性陶瓷微滤膜[J]. 中国陶瓷, 2022, 58(1): 20-28. |
[20] | Qin, W., Zhang, Y. and Wu, J. (2020) Preparation of High-Permeance Ceramic Microfiltration Membranes Using a Pore-Sealing Method. RSC Advances, 10, 5560-5565. https://doi.org/10.1039/c9ra09805d |
[21] | Cho, Y.H., Jeong, S., Kim, S., Kim, Y., Lee, H.J., Lee, T.H., et al. (2021) Sacrificial Graphene Oxide Interlayer for Highly Permeable Ceramic Thin Film Composite Membranes. Journal of Membrane Science, 618, Article ID: 118442. https://doi.org/10.1016/j.memsci.2020.118442 |
[22] | Yin, X., Guan, K., Gao, P., Peng, C. and Wu, J. (2018) A Preparation Method for the Highly Permeable Ceramic Microfiltration Membrane-Precursor Film Firing Method. RSC Advances, 8, 2906-2914. https://doi.org/10.1039/c7ra12314k |
[23] | Zhu, W., Liu, Y., Guan, K., Peng, C., Qiu, W. and Wu, J. (2019) Integrated Preparation of Alumina Microfiltration Membrane with Super Permeability and High Selectivity. Journal of the European Ceramic Society, 39, 1316-1323. https://doi.org/10.1016/j.jeurceramsoc.2018.10.022 |
[24] | Cheng, F., Yu, S., Zhao, C., Guo, Q., Shao, Z. and Lyu, S. (2023) Properties of Cellulose/Polypropylene Nanocomposites Modified by KH550 Silane Coupling Agent. Journal of Physics: Conference Series, 2553, Article ID: 012002. https://doi.org/10.1088/1742-6596/2553/1/012002 |
[25] | Derakhshani, K., Alimohammadi, M. and Eslami-Farsani, R. (2024) The Mechanical Behavior of Silane-Modified Nano-Al2O3/Basalt Fiber/Polymer Composite Materials. Journal of Materials Science, 59, 15270-15282. https://doi.org/10.1007/s10853-024-10080-1 |
[26] | Tang, S., Chen, Z., Chen, F., Lai, X., Wei, Q., Chen, X., et al. (2023) Extraction and Surface Functionalization of Cellulose Nanocrystals from Sugarcane Bagasse. Molecules, 28, Article No. 5444. https://doi.org/10.3390/molecules28145444 |
[27] | 周志刚. 硅烷偶联剂的水解工艺研究[J]. 石化技术, 2022, 29(4): 220-221. |
[28] | 董金美, 李颖, 文静, 等. KH550硅烷偶联剂的水解工艺研究[J]. 盐湖研究, 2020, 28(3): 28-33. |
[29] | 张旭, 闫玥儿, 唐颐. 纸张脱酸中硅烷偶联剂与纤维素的相互作用研究[J]. 复旦学报(自然科学版), 2022, 61(5): 598-607. |
[30] | Spoljaric, S., Salminen, A., Luong, N.D. and Seppälä, J. (2014) Stable, Self-Healing Hydrogels from Nanofibrillated Cellulose, Poly(vinyl Alcohol) and Borax via Reversible Crosslinking. European Polymer Journal, 56, 105-117. https://doi.org/10.1016/j.eurpolymj.2014.03.009 |