|
Material Sciences 2025
Dp780双相钢表面激光熔覆高熵合金涂层组织与性能研究
|
Abstract:
本文采用激光熔覆技术将CoNiCuMn0.8Si0.2高熵合金粉末熔覆于Dp780双相钢基体上。在最优熔覆参数下研究了CoNiCuMn0.8Si0.2高熵合金熔覆层的微观组织、硬度及耐磨性能。结果表明,熔覆层均与Dp780双相钢具有清晰的融合线,其组织形貌主要以白色胞状晶及黑色圆点状组织嵌于基体中。高熵合金涂层显著提升了Dp780双相钢基体的硬度及耐磨性,且硬度值达到了460 HV。
In this paper, CoNiCuMn0.8Si0.2 high entropy alloy powder was cladded on Dp780 dual phase steel substrate by laser cladding technology. The microstructure, hardness and wear resistance of CoNiCuMn0.8Si0.2 high entropy alloy cladding layer were studied under the optimal cladding parameters. The results show that the cladding layer has a clear fusion line with Dp780 dual-phase steel, and its microstructure is mainly white cellular crystal and black dot-like structure embedded in the matrix. The high-entropy alloy coating significantly improves the hardness and wear resistance of the Dp780 dual-phase steel substrate, and the hardness value reaches 460 HV.
[1] | Singh, M.K. (2016) Application of Steel in Automotive Industry. International Journal of Emerging Technology and Advanced Engineering, 6, 246-253. |
[2] | Zhang, W. and Xu, J. (2022) Advanced Lightweight Materials for Automobiles: A Review. Materials & Design, 221, Article ID: 110994. https://doi.org/10.1016/j.matdes.2022.110994 |
[3] | Li, Y., Lin, Z., Jiang, A. and Chen, G. (2003) Use of High Strength Steel Sheet for Lightweight and Crashworthy Car Body. Materials & Design, 24, 177-182. https://doi.org/10.1016/s0261-3069(03)00021-9 |
[4] | Galán, J., Samek, L., Verleysen, P., Verbeken, K. and Houbaert, Y. (2012) Aceros avanzados de alta resistencia en la industria automovilística. Revista de Metalurgia, 48, 118-131. https://doi.org/10.3989/revmetalm.1158 |
[5] | 黄江, 朱志凯, 李凯玥, 师文庆, 吴香林, 谢玉萍. 304不锈钢表面激光熔覆Fe基复合涂层的组织与性能研究[J]. 应用激光, 2023, 43(6): 29-35. |
[6] | 夏宏伟, 刘国承, 孙明, 刘阳, 周凌云. 基于响应面的FeCoCrNi高熵合金激光定向能沉积工艺参数优化[J]. 应用激光, 2023, 43(4): 39-46. |
[7] | Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., et al. (2004) Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6, 299-303. https://doi.org/10.1002/adem.200300567 |
[8] | Yeh, J. (2006) Recent Progress in High-Entropy Alloys. Annales de Chimie Science des Matériaux, 31, 633-648. https://doi.org/10.3166/acsm.31.633-648 |
[9] | 赵勇桃, 胡雨晴, 田志华, 陈志坚, 胡帅, 任慧平. FeCoCrNiAlMo_x激光熔覆层的组织及微区成分分析[J]. 应用激光, 2023, 43(8): 32-38. |
[10] | Ma, S.G. and Zhang, Y. (2012) Effect of Nb Addition on the Microstructure and Properties of Alcocrfeni High-Entropy Alloy. Materials Science and Engineering: A, 532, 480-486. https://doi.org/10.1016/j.msea.2011.10.110 |
[11] | 杨长征, 时小广, 郁录平, 曾庆仪. 激光熔覆制备CoCrFeNiMo/SiC涂层结构及摩擦性能分析[J]. 应用激光, 2022, 42(5): 135-140. |
[12] | Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G. and George, E.P. (2013) The Influences of Temperature and Microstructure on the Tensile Properties of a Cocrfemnni High-Entropy Alloy. Acta Materialia, 61, 5743-5755. https://doi.org/10.1016/j.actamat.2013.06.018 |
[13] | Yang, D., Liu, Y., Qu, N., Han, T., Liao, M., Lai, Z., et al. (2021) Effect of Fabrication Methods on Microstructures, Mechanical Properties and Strengthening Mechanisms of Fe0.25CrNiAl Medium-Entropy Alloy. Journal of Alloys and Compounds, 888, Article ID: 161526. https://doi.org/10.1016/j.jallcom.2021.161526 |
[14] | 张明奇, 姜伟, 王树奇. 激光熔覆Fe基合金涂层的高温磨损性能[J]. 材料保护, 2021, 54(6): 64-71. |