|
Material Sciences 2025
微纳米添加剂α-Al2O3在表面涂层领域的应用现状及市场前景
|
Abstract:
微纳米α-Al2O3是一种重要的功能材料,因其优异的硬度、耐磨性、耐腐蚀性和高热稳定性,在表面涂层领域得到了广泛应用。随着微纳米技术的发展,微纳米级α-Al2O3作为添加剂在各涂层体系中的应用得到了深入研究,显示出其能够显著改善涂层性能的潜力。微纳米α-Al2O3颗粒具有较大的比表面积和表面活性,能够增强涂层的机械性能,如硬度和耐磨性,同时提高涂层的耐腐蚀性和耐高温性能。微纳米α-Al2O3也是一种极优良的改性材料,其与有机硅烷、树脂等材料复合改性,既能大幅提升转化膜的应用效果,对其稳定性和耐候性也有较大的促进作用。在金属表面涂层、陶瓷涂层以及复合材料涂层中,微纳米α-Al2O3添加剂被广泛用于提高涂层的使用寿命和稳定性。此外,它在电子器件、航天航空和汽车工业等高技术领域也展现了广阔的应用前景。未来,随着表面技术的发展,微纳米α-Al2O3无铬钝化领域的市场应用将大幅增长,与其他功能性材料的协同作用和复合材料开发也将成为研究的重点。
Micro-nano α-Al2O3 is an important functional material, because of its excellent hardness, wear resistance, corrosion resistance and high thermal stability, has been widely used in the field of surface coating. With the development of micro-nano technology, the application of micro-nano α-Al2O3 as an additive in various coating systems has been deeply studied, showing its potential to significantly improve coating properties. Micro-nano α-Al2O3 particles have a large specific surface area and surface activity, which can enhance the mechanical properties of the coating, such as hardness and wear resistance, while improving the corrosion resistance and high temperature resistance of the coating. Micro-nano α-Al2O3 is also an excellent modified material, and its composite modification with organosilane, resin and other materials can greatly improve the application effect of conversion film, and also has a greater role in promoting its stability and weather resistance. In metal surface coatings, ceramic coatings and composite coatings, micro-nano α-Al2O3 additives are widely used to improve the service life and stability of coatings. In addition, it also shows broad application prospects in high-tech fields such as electronic devices, aerospace and automotive industries. In the future, with the development of surface technology, the market application of micro-nano α-Al2O3 chromium-free passivation will grow significantly, and the synergy with other functional materials and the development of composite materials will also become the focus of research.
[1] | 智鹏飞. 金属材料的腐蚀与防腐技术研究[J]. 山西冶金, 2023, 46(2): 63-64, 81. |
[2] | 胡丽华, 张玉楠, 常炜, 等. 2507双相不锈钢在南海深水环境中的点蚀和缝隙腐蚀行为[J]. 腐蚀与防护, 2022, 43(6): 33-37. |
[3] | 奚军生, 袁景追, 喻岚, 等. 钝化液中金属杂质对镀锌层三价铬钝化的影响[J]. 电镀与涂饰, 2024, 43(6): 117-122. |
[4] | 张玉, 李世凯, 李涛, 等. 热浸镀锌表面钝化技术的研究进展[J]. 现代制造技术与装备, 2024, 60(10): 97-100. |
[5] | Yang, X.K., Fan, Y.Y., Jiang, Y.H. and Li, Z.L. (2010) Study on Chromium-Free Color Passivation for Zinc Coating Treated with Silicate. Advanced Materials Research, 154, 1301-1304. https://doi.org/10.4028/www.scientific.net/amr.154-155.1301 |
[6] | 王若彤, 焦洋, 张胜寒, 等. 镀锌钢无铬钝化技术研究进展[J]. 山东化工, 2022, 51(4): 69-71. |
[7] | Li, Q., Lu, H., Cui, J., An, M. and Li, D.Y. (2017) Improve the Performance of Cr-Free Passivation Film through Nanoelectrodeposition for Replacement of Toxic Cr6+ Passivation in Electrogalvanizing Process. Surface and Coatings Technology, 324, 146-152. https://doi.org/10.1016/j.surfcoat.2017.05.081 |
[8] | 李会芬, 邹忠利, 李春龙. 镀锌层表面无铬钝化工艺的研究进展[J]. 材料保护, 2021, 54(3): 137-143, 168. |
[9] | Haiyang, F., Bo, G., Yingwei, Z. and Pengfei, X. (2020) Effects of Silanes on the Structure and Properties of Chromium-Free Passivation. Science of Advanced Materials, 12, 1012-1018. https://doi.org/10.1166/sam.2020.3750 |
[10] | 苏更林. 各显神通的精细氧化铝[J]. 百科知识, 2023(26): 22-25. |
[11] | 胡博强, 侯焕焕, 王建立. 氧化铝晶型变化[J]. 广州化工, 2024, 52(1): 30-32. |
[12] | Kozyrev, N.V. (2024) Thermodynamic Properties and Equation of State for α-Alumina. International Journal of Thermophysics, 45, Article No. 37. https://doi.org/10.1007/s10765-024-03337-z |
[13] | Hu, Y.Z., Luo, L.L., Shen, H.H., Hu, S.L., Tan, Z.Y. and Long, X.G. (2022) Interfacial Properties of Multilayer Graphene and α-Alumina: Experiments and Simulations. Ceramics International, 48, 12056-12064. https://doi.org/10.1016/j.ceramint.2022.01.064 |
[14] | 吴慧斌, 徐冰, 谭志清. 金属表面无铬钝化工艺研究进展[J]. 广州化工, 2019, 47(23): 31-32, 79. |
[15] | 田丰, 赵婧, 邱龙时, 等. 镀锌钢板钼酸盐钝化膜防腐蚀性能研究[J]. 世界有色金属, 2019(15): 134-136. |
[16] | 秦振华, 李红玲. 6061铝合金表面氟钛酸盐转化新工艺[J]. 腐蚀与防护, 2014, 35(7): 742-745. |
[17] | 曹志强, 陈昱锟, 蓝丽, 等. α-氧化铝的结构、性质及应用前景[J]. 大众科技, 2023, 25(3): 62-65. |
[18] | 杨卫亚, 王刚, 凌凤香, 等. 三维贯穿结构大孔氧化铝的制备与性质表征[J]. 石油化工, 2019, 48(7): 661-665. |
[19] | 杨占刚, 陈孟贤, 王晓峰, 等. 凝露环境中纳米氧化铝改性环氧树脂电气特性研究[J]. 绝缘材料, 2024, 57(12): 36-44. |
[20] | 伏建康, 马常帅, 冉长荣, 等. 微纳米α-Al2O3改性丙烯酸树脂-有机硅烷复合钝化对不锈钢硬度及耐蚀性的影响[J]. 材料保护, 2024, 57(5): 76-82. |
[21] | 王涛, 朱印, 杨承伟, 等. PDMS及纳米二氧化硅改性聚氨酯防腐涂层的性能研究[J]. 聚酯工业, 2024, 37(6): 56-59. |
[22] | 张旭阳, 王秀芳, 万德田, 等. 氧化铝-氧化锆预应力陶瓷的抗钙镁铝硅酸盐腐蚀性能[J]. 硅酸盐学报, 2024, 52(12): 3815-3823. |
[23] | 颜蜀雋, 谭雅莉, 庞忠荣, 等. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 301-306. |
[24] | Liu, J., Tian, B., Lu, N., Liu, Z., Zhang, Z., Shi, M., et al. (2024) Study on Aluminium Oxide Doping Modification of Indium Oxide and Thermoelectric Properties. Ceramics International, 50, 52027-52035. https://doi.org/10.1016/j.ceramint.2024.03.202 |
[25] | 刘仁辉, 刘斌斌, 喻玺, 等. 黄铜表面植酸钝化膜耐蚀性及其成膜机理[J]. 表面技术, 2017, 46(9): 197-202. |
[26] | He, W., Liu, Y., Jia, Y., Zhao, Y. and Le, H. (2024) Corrosion Resistance and Long-Term Antibacterial Performance of ZnO-Al2O3 Nanocomposite Coatings on Aluminum Alloy. Composites Communications, 51, Article ID: 102110. https://doi.org/10.1016/j.coco.2024.102110 |
[27] | Zeng, X., Mao, H., Liu, Q., Li, F., Lan, X., Wang, F., et al. (2024) Synthesis of Decorated Polyborosiloxane for Enhancing the Flame Retardancy and Mechanical Property of Epoxy Resin. International Journal of Polymer Analysis and Characterization, 30, 98-108. https://doi.org/10.1080/1023666x.2024.2425720 |
[28] | Li, R., Jiang, R., Tang, Q., Yu, J. and Song, D. (2024) Effect of Diatomite on the Mechanical and Electrical Properties of Polyurethane/Epoxy Resin Composites. Polymer-Plastics Technology and Materials, 64, 382-395. https://doi.org/10.1080/25740881.2024.2408341 |
[29] | 颜蜀雋, 谭雅莉, 庞忠荣, 等. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的缓蚀性能研究[J]. 材料导报, 2024, 38(20): 301-306. |
[30] | Liang, X., Hua, C., Zhang, M., Zheng, Y., Song, S., Cai, M., et al. (2023) Preparation of Anticorrosive Epoxy Nanocomposite Coating Modified by Polyethyleneimine Nano-Alumina. Coatings, 13, Article 561. https://doi.org/10.3390/coatings13030561 |
[31] | Wei, Y., Zhu, Z., Zhang, J., Xue, Y., Zhao, X., Zhang, J., et al. (2025) Preparation and Tribological Properties Study of a Novel Self-Lubricating Alumina-Based Composite Coating. Tribology International, 203, Article ID: 110414. https://doi.org/10.1016/j.triboint.2024.110414 |
[32] | Rocha, F.S., Bousser, E., Azzi, M., Khelfaoui, F., Vernhes, L., Patience, G.S., et al. (2024) Alumina Coatings on Ni-Based Superalloys: The Impact of Annealing on Heavy Oil Fouling. Surface and Coatings Technology, 493, Article ID: 131266. https://doi.org/10.1016/j.surfcoat.2024.131266 |
[33] | Wei, Y., Zhu, Z., Zhang, J., Xue, Y., Zhao, X., Zhang, J., et al. (2025) Preparation and Tribological Properties Study of a Novel Self-Lubricating Alumina-Based Composite Coating. Tribology International, 203, Article ID: 110414. https://doi.org/10.1016/j.triboint.2024.110414 |
[34] | Wang, Z., Li, H., Kou, R., Yang, X., Wang, S. and Huang, J. (2024) Terbium-Reinforced Alumina Coating Produced by Plasma Electrolytic Oxidation and a New Strategy for In-Situ Corrosion Monitoring. Surface and Coatings Technology, 489, Article ID: 131085. https://doi.org/10.1016/j.surfcoat.2024.131085 |
[35] | Bhandari, S., Hanzel, O., Kermani, M., Sglavo, V.M., Biesuz, M. and Franchin, G. (2025) Rapid Debinding and Sintering of Alumina Ceramics Fabricated by Direct Ink Writing. Journal of the European Ceramic Society, 45, Article ID: 117144. https://doi.org/10.1016/j.jeurceramsoc.2024.117144 |
[36] | Zhang, X., Hu, J., Li, S., Wang, P., Yang, G., Yuan, Z., et al. (2024) Preparation and Electrical Properties of V-Sm-Y-O Pigments for Black Alumina Ceramics. Journal of Materials Science: Materials in Electronics, 35, Article No. 2277. https://doi.org/10.1007/s10854-024-14038-6 |
[37] | Yang, Z., Liu, G., Qi, T., Zhou, Q., Peng, Z., Shen, L., et al. (2024) Structural Defect and Activated Alumina of Spheric α-Al2O3 Improving Alumina Ceramics Density from the Industrial Coarse Gibbsite. Ceramics International, 50, 54643-54653. https://doi.org/10.1016/j.ceramint.2024.10.322 |
[38] | Tang, M., Zhu, W., Shen, Y., Zou, H., Han, Y. and Ran, X. (2024) Elimination Mechanism of Voids Caused by Density Differences in High Crystallinity Alumina/Alumina Joints Bonded with Dysprosium Aluminum Silicate Glass Ceramic Filler. Ceramics International, 50, 45880-45890. https://doi.org/10.1016/j.ceramint.2024.08.429 |
[39] | 李伟华, 王成斌, 王旭东, 等. 高致密度氧化铝陶瓷的制备及影响因素研究[J]. 河南化工, 2024, 41(3): 17-19, 32. |
[40] | Yang, Z., Liu, G., Qi, T., et al. (2024) Structural Defect and Activated Alumina of Spheric α-Al2O3 Improving Alumina Ceramics Density from the Industrial Coarse Gibbsite. Ceramics International, 50, 54643-54653. |
[41] | Yang, Z., Liu, G., Qi, T., Zhou, Q., Peng, Z., Shen, L., et al. (2024) Structural Defect and Activated Alumina of Spheric α-Al2O3 Improving Alumina Ceramics Density from the Industrial Coarse Gibbsite. Ceramics International, 50, 54643-54653. https://doi.org/10.1016/j.ceramint.2024.10.322 |
[42] | Huang, M., Zhang, C., Yang, H., Hou, F. and Ding, N. (2024) Foam Forming of Highly Porous Alumina Ceramic Paper and Its Enhancement of Mechanical and Thermal Insulation Properties in Aerogel Composites. Ceramics International, 50, 54575-54585. https://doi.org/10.1016/j.ceramint.2024.10.316 |