全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

互连网络 C n × S m 的谱特征及其能量
Spectral Characteristics and Energy of Interconnected Networks C n × S m

DOI: 10.12677/pm.2025.153101, PP. 262-272

Keywords: 互连网络,邻接谱,Laplace谱,能量
Interconnected Network
, Adjacency Spectrum, Laplace Spectrum, Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

图的特征值集及其多重性称为谱,它可以用来获得图的各种拓扑性质,如连通性、韧性等。师海忠利用图的笛卡尔乘积方法构建了新的笛卡尔乘积互连网络 C n × S m 。本文根据分析研究互连网络的拓扑结构,刻画了 C n × S m 的邻接谱和Laplace谱。进一步,根据Laplace矩阵的Fiedler向量对 C n × S m 进行了图划分。另外,我们还研究得到了谱能量表达式。
The eigenvalue set and its multiplicity of a graph are called spectra, which can be used to obtain various topological properties of the graph, such as connectivity, resilience, etc. Shi Haizhong used the Cartesian product method of graphs to construct a new Cartesian product interconnection network C n × S m . This article describes the adjacency spectrum and Laplace spectrum of C n × S

References

[1]  Fiedler, M. (1973) Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal, 23, 298-305.
https://doi.org/10.21136/cmj.1973.101168
[2]  师海忠. 几类新的笛卡尔乘积互连网络[J]. 计算机科学, 2013, 40(S1): 265-270+306.
[3]  Brouwer, A.E. and Haemers, W.H. (2012) Spectra of Graphs. Springer.
[4]  Gutman, I. and Zhou, B. (2006) Laplacian Energy of a Graph. Linear Algebra and Its Applications, 414, 29-37.
https://doi.org/10.1016/j.laa.2005.09.008
[5]  So, W., Robbiano, M., de Abreu, N.M. and Gutman, I. (2009) Applications of a Theorem by Ky Fan in the Theory of Graph Energy. Linear Algebra and Its Applications, 432, 2163-2169.
[6]  Florkowski III, S.F. (2008) Spectral Graph Theory of the Hypercube. Naval Postgraduate School.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133