全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bloch-Type空间 B α Z p 空间上的超复合算子
Superposition Operators between Bloch-Type Spaces B α and Z p Spaces

DOI: 10.12677/pm.2025.153099, PP. 248-254

Keywords: 算子论,超复合算子,Bloch-Type空间,空间,莫比乌斯变换
Operator Theory
, Superposition Operator, Bloch-Type Space, Space, M?bius Transform

Full-Text   Cite this paper   Add to My Lib

Abstract:

复合算子在泛函分析与算子理论当中有丰富的应用与深厚的研究背景,在泛函分析中,人们关注各种函数空间的性质与结构,如 L p 空间和连续函数空间 C( X ) 等。复合函数作为一种将函数空间进行变换的工具,有助于深入理解函数空间之间的关系与结构,例如通过研究复合算子在不同函数空间上的作用,可以揭示函数空间的嵌入性、紧性以及有界性等等。不仅如此,复合算子在动力系统与遍历理论、量子力学、算子代数等数学分支当中也作为算子论的工具,推动其他数学分支的发展。而超复合算子是指以整函数作为复合子的特殊复合算子,推动着算子论的发展:超复合算子的有界性是研究复合算子当中比较重要的部分。近年来,有许多学者研究了超复合算子作用在一些经典的解析函数空间上的有界性。本文通过利用 Z p 空间的定义与性质,讨论了超复合算子上Bloch-type空间 B α Z p 空间的有界性问题以及Bloch-type空间 B α 到Morrey空间上的有界性问题。
Composite operators have extensive applications and a profound research background in functional analysis and operator theory. In functional analysis, researchers focus on the properties and structures of various function spaces, such as L p spaces and the continuous function space C( X ) . As a tool for transforming function spaces, composite operators contribute to a deeper understanding of the relationships and structures among function spaces. For instance, by studying the actions of composite operators on different function spaces, one can reveal properties like the embedding, compactness, and boundedness of function spaces. Moreover, composite operators as tools in operator theory, also play a role in promoting the development of other mathematical branches, such as dynamical systems and ergodic theory, quantum mechanics, and operator algebras. Superposite operators are special composite operators with entire functions as the composition elements, and they also drive the development of operator theory. The boundedness of Superposite operators is a

References

[1]  Xiao, J. (2001) Holomorphic Classes. Springer-Verlag.
https://doi.org/10.1007/b87877
[2]  Zhu, K. (1993) Bloch Type Spaces of Analytic Functions. The Rocky Mountain Journal of Mathematics, 23, 1143-1177.
https://doi.org/10.1216/rmjm/1181072549
[3]  Morrey, C.B. (1938) On the Solutions of Quasi-Linear Elliptic Partial Differential Equations. Transactions of the American Mathematical Society, 43, 126-166.
https://doi.org/10.1090/S0002-9947-1938-1501936-8
[4]  Taylor, M. (1992) Analysis on Morrey Spaces and Applications to Navier-Stokes and Other Evolution Equations. Communications in Partial Differential Equations, 17, 1407-1456.
https://doi.org/10.1080/03605309208820892
[5]  Olsen, P. (1995) Fractional Integration, Morrey Spaces and a Schrödinger Equation. Commun Partial Differential Equations, 20, 2005-2055.
https://doi.org/10.1080/03605309508821161
[6]  Kukavica, I. (2008) Regularity for the Navier-Stokes Equations with a Solution in a Morrey Space. Indiana University Mathematics Journal, 57, 2843-2860.
https://doi.org/10.1512/iumj.2008.57.3628
[7]  Palagachev, D. and Softova, L. (2004) Singular Integral Operators, Morrey Spaces and Fine Regularity of Solutions to PDE’s. Potential Analysis, 20, 237-263.
https://doi.org/10.1023/B:POTA.0000010664.71807.f6
[8]  Alvarez, V., Marquez, M.A. and Vukotic, D. (2004) Superposition Operators between the Bloch Space and Bergman Spaces. Arkiv for Matematik, 42, 205-214.
https://doi.org/10.1007/BF02385476
[9]  Cmera, G.A. (1995) Nonlinear Superposition on Spaces of Analytic Functions, Harmonic Analysis and Operator Theory (Caracas, 1994). Contemporary Mathematics, 189, 103-116.
[10]  Xiong, C. (2006) Superposition Operators between Spaces and Bloch-Type Spaces. Complex Variables, Theory and Application, 50, 935-938.
https://doi.org/10.1080/02781070500139740
[11]  Zhao, R. (1996) On a General Family of Function Spaces. Suomalainen Tiedeakatemia, 1-56.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133