Selenium is the third element of the group of chalcogens and is especially used in electrotechnical applications. Since many manufacturing processes use thin films of the material, knowledge of the mechanical properties is important for the detailed process layout. During the studies, the mechanical properties of trigonal selenium were determined. Therefore simulations of a uniaxial tensile test with a constant strain rate of 4.2?10–6/fs using molecular dynamic methods were performed. Finally a great dependency of the mechanical properties on temperature, direction and strain was observed. In particular, anisotropy in fracture behavior can be demonstrated. This can be explained by the anisotropy of trigonal selenium. In addition, a density distribution was calculated, showing that the mechanical properties are influenced by diffusion processes occurring at increased temperatures. The changes in dynamic processes point to a ductile-brittle transition.
References
[1]
Butterman, W. and Brown, Jr., R.D. (2004) Selenium Mineral Commodity Profiles. US Geological Survey. http://pubs.usgs.gov/of/2003/of03-018/of03-018.pdf
[2]
Greenwood, N. and Earnshaw, A. (1984) Chemistry of the Elements. Elsevier Science and Technology. https://www.sciencedirect.com/book/9780750633659/chemistry-of-the-elements
[3]
Abadias, G., Chason, E., Keckes, J., Sebastiani, M., Thompson, G.B., Barthel, E., et al. (2018) Review Article: Stress in Thin Films and Coatings: Current Status, Challenges, and Prospects. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 36, Article 020801. https://doi.org/10.1116/1.5011790
[4]
Hÿtch, M.J. and Minor, A.M. (2014) Observing and Measuring Strain in Nanostructures and Devices with Transmission Electron Microscopy. MRS Bulletin, 39, 138-146. https://doi.org/10.1557/mrs.2014.4
[5]
Haberlandt, R., Fritzsche, S., Peinel, G. and Heinzinger, K. (2012) Molekulardynamik. Springer Vieweg.
[6]
Pal, S. and Reddy, K.V. (2024) Atomistic Simulation. In: Molecular Dynamics for Materials Modeling, CRC Press, 1-22. https://doi.org/10.1201/9781003323495-1
[7]
Stillinger, F.H. and Weber, T.A. (1985) Computer Simulation of Local Order in Condensed Phases of Silicon. Physical Review B, 31, 5262-5271. https://doi.org/10.1103/physrevb.31.5262
[8]
Stillinger, F.H., Weber, T.A. and LaViolette, R.A. (1986) Chemical Reactions in Liquids: Molecular Dynamics Simulation for Sulfur. The Journal of Chemical Physics, 85, 6460-6469. https://doi.org/10.1063/1.451426
[9]
Oligschleger, C., Jones, R.O., Reimann, S.M. and Schober, H.R. (1996) Model Interatomic Potential for Simulations in Selenium. Physical Review B, 53, 6165-6173. https://doi.org/10.1103/physrevb.53.6165
[10]
Oligschleger, C., Jones, R.O., Reimann, S.M. and Schober, H.R. (2020) Erratum: Model Interatomic Potential for Simulations in Selenium [Phys. Rev. B 53, 6165(1996)]. Physical Review B, 102, Article 99901. https://doi.org/10.1103/physrevb.102.099901
[11]
Koh, S.J.A. and Lee, H.P. (2006) Molecular Dynamics Simulation of Size and Strain Rate Dependent Mechanical Response of FCC Metallic Nanowires. Nanotechnology, 17, 3451-3467. https://doi.org/10.1088/0957-4484/17/14/018
[12]
Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD: Visual Molecular Dynamics. Journal of Molecular Graphics, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
[13]
Frenkel, D. and Smit, B. (2002) Monte Carlo Simulations. In: Understanding Molecular Simulation, Elsevier, 23-61. https://doi.org/10.1016/b978-012267351-1/50005-5
[14]
Hopkins, P., Fortini, A., Archer, A.J. and Schmidt, M. (2010) The Van Hove Distribution Function for Brownian Hard Spheres: Dynamical Test Particle Theory and Computer Simulations for Bulk Dynamics. The Journal of Chemical Physics, 133, Article 224505. https://doi.org/10.1063/1.3511719
[15]
Schaftenaar, G., Vlieg, E. and Vriend, G. (2017) Molden 2.0: Quantum Chemistry Meets Proteins. Journal of Computer-Aided Molecular Design, 31, 789-800. https://doi.org/10.1007/s10822-017-0042-5
[16]
Bermejo, F.J., García-Hernández, M., Mompeán, F.J., MacMorrow, D. and Martinez, J.L. (1995) Nature of the First Diffraction Peak in Glassy Selenium. Physical Review B, 51, 11932-11935. https://doi.org/10.1103/physrevb.51.11932
[17]
Kirchhoff, F., Kresse, G. and Gillan, M.J. (1998) Structure and Dynamics of Liquid Selenium. Physical Review B, 57, 10482-10495. https://doi.org/10.1103/physrevb.57.10482
Reyes-Retana, J.A. and Valladares, A.A. (2010) Structural Properties of Amorphous Selenium: An AB Initio Molecular-Dynamics Simulation. Computational Materials Science, 47, 934-939. https://doi.org/10.1016/j.commatsci.2009.11.026
[20]
Oligschleger, C., Facius, C., Kutz, H., Langen, C., Thumm, M., von Brühl, S., et al. (2009) Molecular Dynamics Simulation of Structural and Dynamic Properties of Selenium Structures with Different Degrees of Amorphization. Journal of Physics: Condensed Matter, 21, Article 405402. https://doi.org/10.1088/0953-8984/21/40/405402
[21]
Ksiażek, K., Wacke, S., Górecki, T. and Górecki, C. (2007) Effect of the Milling Conditions on the Degree of Amorphization of Selenium by Milling in a Planetary Ball Mill. Journal of Physics: Conference Series, 79, Article 012037. https://doi.org/10.1088/1742-6596/79/1/012037
[22]
Hegedüs, J. and Kugler, S. (2005) Growth of Amorphous Selenium Thin Films: Classical versus Quantum Mechanical Molecular Dynamics Simulation. Journal of Physics: Condensed Matter, 17, 6459-6468. https://doi.org/10.1088/0953-8984/17/41/016