全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enhancing Rural Electrification in Mauritania through Hybrid Energy Solutions: A Techno-Economic Analysis Using HOMER Software

DOI: 10.4236/jpee.2025.133001, PP. 1-15

Keywords: Hybrid System, Rural Electrification, Homer Energy Tool, LCOE, NPC

Full-Text   Cite this paper   Add to My Lib

Abstract:

The African continent remains the least electrified, particularly acute in sub-Saharan Africa, where there is a significant gap between urban and rural electrification rates. To address the electricity access gap in isolated rural areas, decentralized electricity production solutions, such as hybrid systems (HS) that combine diesel generators, solar photovoltaics (PV), and batteries, are increasingly being proposed. The present study examines the optimal combination of these hybrid energy sources for three villages across different climatic regions in Mauritania. Using a MATLAB scripts to analyze the load profiles of the selected villages and HOMER (Hybrid Optimization Multiple Energy Resource) software for techno-economic analysis, this research identifies the best hybrid system configurations based on the levelized cost of energy (LCOE) and net present cost (NPC). The results provide a comprehensive analysis of generation plant hybridization options, allowing to reduce the energy cost of a kWh to approximately $0.3, approximately half of the current cost of electricity production in isolated areas (26.36 MRU/kWh, equivalent to $0.66/kWh). In addition, this work offers valuable data to support the Mauritanian government’s rural electrification initiatives.

References

[1]  Bukari, D., Kemausuor, F., Quansah, D.A. and Adaramola, M.S. (2021) Towards Accelerating the Deployment of Decentralised Renewable Energy Mini-Grids in Ghana: Review and Analysis of Barriers. Renewable and Sustainable Energy Reviews, 135, Article 110408.
https://doi.org/10.1016/j.rser.2020.110408
[2]  The United Nations Development Programme (2030) The Sustainable Development Goals.
https://www.undp.org/sustainable-development-goals/affordable-and-clean-energy
[3]  Williams, N.J., Jaramillo, P., Taneja, J. and Ustun, T.S. (2015) Enabling Private Sector Investment in Microgrid-Based Rural Electrification in Developing Countries: A Review. Renewable and Sustainable Energy Reviews, 52, 1268-1281.
https://doi.org/10.1016/j.rser.2015.07.153
[4]  Bhattacharyya, S. (2018) Mini-Grids for the Base of the Pyramid Market: A Critical Review. Energies, 11, Article 813.
https://doi.org/10.3390/en11040813
[5]  Adeoye, O. and Spataru, C. (2019) Modelling and Forecasting Hourly Electricity Demand in West African Countries. Applied Energy, 242, 311-333.
https://doi.org/10.1016/j.apenergy.2019.03.057
[6]  Nkiriki, J. and Ustun, T.S. (2017) Mini-Grid Policy Directions for Decentralized Smart Energy Models in Sub-Saharan Africa. 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Turin, 26-29 September 2017, 1-6.
https://doi.org/10.1109/isgteurope.2017.8260217
[7]  World Bank (2022) Access to electricity, Urban (% of Population).
https://data.worldbank.org/indicator/EG.ELC.ACCS.UR.ZS
[8]  Dia, N.K., Bayod-Rújula, A.A., Mamoudou, N., Diallo, M., Ethmane, C.S. and Bilal, B.O. (2017) Energy Context in Mauritania. Energy Sources, Part B: Economics, Planning, and Policy, 12, 182-190.
https://doi.org/10.1080/15567249.2015.1010021
[9]  López-González, A., Domenech, B. and Ferrer-Martí, L. (2018) Sustainability and Design Assessment of Rural Hybrid Microgrids in Venezuela. Energy, 159, 229-242.
https://doi.org/10.1016/j.energy.2018.06.165
[10]  Lozano, L., Querikiol, E.M., Abundo, M.L.S. and Bellotindos, L.M. (2019) Techno-economic Analysis of a Cost-Effective Power Generation System for Off-Grid Island Communities: A Case Study of Gilutongan Island, Cordova, Cebu, Philippines. Renewable Energy, 140, 905-911.
https://doi.org/10.1016/j.renene.2019.03.124
[11]  Moner-Girona, M., Szabo, S. and Bhattacharyya, S. (2016) Off-Grid Photovoltaic Technologies in the Solar Belt: Finance Mechanisms and Incentives. Reference Module in Earth Systems and Environmental Sciences, Elsevier.
https://doi.org/10.1016/b978-0-12-409548-9.09713-x
[12]  Ramchandran, N., Pai, R. and Parihar, A.K.S. (2016) Feasibility Assessment of Anchor-Business-Community Model for Off-Grid Rural Electrification in India. Renewable Energy, 97, 197-209.
https://doi.org/10.1016/j.renene.2016.05.036
[13]  Maaloum, V., Bououbeid, E.M., Ali, M.M., Yetilmezsoy, K., Rehman, S., Ménézo, C., et al. (2024) Techno-Economic Analysis of Combined Production of Wind Energy and Green Hydrogen on the Northern Coast of Mauritania. Sustainability, 16, Article 8063.
https://doi.org/10.3390/su16188063
[14]  Mohamed, S., Ramdhane, I.B., Ndiaye, D., Mahmoud, A.K., Elmamy, M., Menou, M.M., Yahya, A.M. and Youm, I. (2019) Homer’s Feasibility Analysis of a Hybrid System with a Grid Connection Option for the Mauritanian Northern Coast. Journal of Power and Energy Engineering, 7, 27-42.
[15]  Climate Risk Profile: Mauritania Tomalka, J., Lange, S., Röhrig, F. and Gornott, C. (2020) Climate Risk Profile: Mauritania, (Climate Risk Profiles for Sub-Saharan Africa Series), Bonn: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, 11 p.
https://publications.pik-potsdam.de/pubman/faces/ViewItemFullPage.jsp?itemId=item_25252_1
[16]  A.N.S.A.D.E. (2024) Localités habitées en Mauritanie, 2023.
https://ansade.mr/fr/publications/?row=RGPH
[17]  Alliance Rural Electrification/United States Agency for International Development (2014) Hybrid Mini-Grids for Rural Electrification: Lessons Learned. 1-72.
https://www.ctc-n.org/sites/www.ctc-n.org/files/resources/hybrid_mini-grids_for_rural_electrification_2014.pdf
[18]  Regulatory Authority of Mauritania (2022) Rapport Annuel 2022.
https://www.are.mr/index.php/l-autorite/publications
[19]  Bank Centrale of Mauritania (2024) Monthly Exchange Rates Indicators.
https://www.bcm.mr/
[20]  Kane, C.S.E., Ba, L., Tapsoba, G., Record, M. and Haidara, F. (2021) Availability of Renewable Energy Sources in Mauritania: Potential, Current Status and Mitigation Potential. Journal of Energy Research and Reviews, 8, 21-29.
https://doi.org/10.9734/jenrr/2021/v8i230206
[21]  Lemrabout, A., Kerboua, A., Mohamed, R., Bouaichi, A., Ba, A., Minehna, S.M., et al. (2024) Performance Analysis of a Photovoltaic Component Integrated into a Hybrid Power Plant in Southeast Mauritania. International Journal of Renewable Energy Development, 13, 1093-1103.
https://doi.org/10.61435/ijred.2024.60474
[22]  Adaramola, M.S., Paul, S.S. and Oyewola, O.M. (2014) Assessment of Decentralized Hybrid PV Solar-Diesel Power System for Applications in Northern Part of Nigeria. Energy for Sustainable Development, 19, 72-82.
https://doi.org/10.1016/j.esd.2013.12.007
[23]  Shaahid, S.M., El-Amin, I., Rehman, S., Al-Shehri, A., Ahmad, F., Bakashwain, J., et al. (2010) Techno-Economic Potential of Retrofitting Diesel Power Systems with Hybrid Wind-Photovoltaic-Diesel Systems for Off-Grid Electrification of Remote Villages of Saudi Arabia. International Journal of Green Energy, 7, 632-646.
https://doi.org/10.1080/15435075.2010.529408
[24]  Cozzolino, R., Tribioli, L. and Bella, G. (2016) Power Management of a Hybrid Renewable System for Artificial Islands: A Case Study. Energy, 106, 774-789.
https://doi.org/10.1016/j.energy.2015.12.118
[25]  Rohani, G. and Nour, M. (2014) Techno-Economical Analysis of Stand-Alone Hybrid Renewable Power System for Ras Musherib in United Arab Emirates. Energy, 64, 828-841.
https://doi.org/10.1016/j.energy.2013.10.065
[26]  Atmospheric Science Data Center-NASA (2024) Surface Meteorology and Solar Energy.
[27]  Acuña, L.G., Lake, M., Padilla, R.V., Lim, Y.Y., Ponzón, E.G. and Soo Too, Y.C. (2018) Modelling Autonomous Hybrid Photovoltaic-Wind Energy Systems under a New Reliability Approach. Energy Conversion and Management, 172, 357-369.
https://doi.org/10.1016/j.enconman.2018.07.025
[28]  Liu, B., Duan, S. and Cai, T. (2011) Photovoltaic DC-Building-Module-Based BIPV System—Concept and Design Considerations. IEEE Transactions on Power Electronics, 26, 1418-1429.
https://doi.org/10.1109/tpel.2010.2085087
[29]  Awopone, A.K. (2021) Feasibility Analysis of Off-Grid Hybrid Energy System for Rural Electrification in Northern Ghana. Cogent Engineering, 8, Article 1981523.
https://doi.org/10.1080/23311916.2021.1981523
[30]  Ramli, M.A.M., Bouchekara, H.R.E.H. and Alghamdi, A.S. (2018) Optimal Sizing of PV/Wind/Diesel Hybrid Microgrid System Using Multi-Objective Self-Adaptive Differential Evolution Algorithm. Renewable Energy, 121, 400-411.
https://doi.org/10.1016/j.renene.2018.01.058
[31]  Odoi-Yorke, F., Abaase, S., Zebilila, M. and Atepor, L. (2022) Feasibility Analysis of Solar PV/Biogas Hybrid Energy System for Rural Electrification in Ghana. Cogent Engineering, 9, Article 2034376.
https://doi.org/10.1080/23311916.2022.2034376
[32]  Amutha, W.M. and Rajini, V. (2016) Cost Benefit and Technical Analysis of Rural Electrification Alternatives in Southern India Using Homer. Renewable and Sustainable Energy Reviews, 62, 236-246.
https://doi.org/10.1016/j.rser.2016.04.042
[33]  Baurzhan, S. and Jenkins, G.P. (2016) Off-Grid Solar PV: Is It an Affordable or Appropriate Solution for Rural Electrification in Sub-Saharan African Countries? Renewable and Sustainable Energy Reviews, 60, 1405-1418.
https://doi.org/10.1016/j.rser.2016.03.016
[34]  HOMER Energy (2024) HOMER Pro-Microgrid Software for Designing Optimized Hybrid Microgrids.
https://homerenergy.com/products/pro/index.html
[35]  Afonaa-Mensah, S., Odoi-Yorke, F. and Babatunde Majeed, I. (2024) Evaluating the Impact of Industrial Loads on the Performance of Solar PV/Diesel Hybrid Renewable Energy Systems for Rural Electrification in Ghana. Energy Conversion and Management: X, 21, Article 100525.
https://doi.org/10.1016/j.ecmx.2024.100525
[36]  (2022) Mauritania Energy Report.
https://www.enerdata.net/estore/country-profiles/mauritania.html
[37]  World Bank (2021) Etude d’un plan national d’electrification (PNE) pour la mauritanie: Rapport sur l’analyse géospatiale des options d’électrification à moindre coût avec réticulation du réseau.
https://documents.worldbank.org/en/publication/documents-reports/documentlist?qterm=Mauritanie%202022

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133