The study investigates the application of solar photodecomposition to remove BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) from groundwater contaminated by gasoline station activities. BTEX compounds, known for their toxicity and carcinogenicity, pose significant environmental and public health risks. The primary goal of this research was to develop effective and sustainable technology for treating and removing BTEX from groundwater using solar photodecomposition. To achieve this objective, microstructured titanium dioxide (TiO2) was combined with diatomite to leverage heterogeneous photocatalysis for BTEX degradation. The TiO2-Diatomite (TiO2-Dt) composite was characterized using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM provided detailed insights into the material’s structure and morphology, while TGA assessed the thermal stability of the photocatalyst in BTEX degradation processes. Experimental results demonstrated that solar photodecomposition is an effective method for water remediation. Tests conducted with 9.0 g of TiO2-Dt and 40% BTEX solutions evaluated the removal efficiency across varying catalyst masses (0.8 g to 2.5 g). The highest BTEX removal efficiency, 79.0%, was achieved with 1.0 g of TiO2-Dt. Catalyst amounts between 1.0 g and 1.2 g showed good performance, with removal efficiencies ranging from 71.4% to 79.0%. However, increasing the catalyst mass to 2.0 g and 2.5 g resulted in reduced efficiencies (57.4% to 64.4%), suggesting saturation or dispersion limitations. Breakthrough curves and Boltzmann calculations confirmed TiO2-Dt’s effectiveness in solar photodecomposition. Moderate catalyst amounts (1.0 - 1.2 g) optimized BTEX removal, while higher quantities reduced efficiency, underscoring solar radiation’s role in accelerating pollutant degradation.
References
[1]
(2000). CONAMA—Resolução no 273, de 29 de novembro de 2000. https://cetesb.sp.gov.br/licenciamento/documentos/2000_Res_CONAMA_273.pdf
[2]
(2009) CONAMA—Resolução no 420, de 28 de dezembro de 2009. https://cetesb.sp.gov.br/areascontaminadas/wpcontent/uploads/sites/17/2017/09/resolucao-conama-420-2009-gerenciamento-de-acs.pdf
[3]
Andrade, J. D. A., Augusto, F., & Jardim, I. C. S. F. (2010). Biorremediação de solos contaminados por petróleo e seus derivados. Eclética Química, 35, 17-43. https://doi.org/10.1590/s0100-46702010000300002
[4]
ANP (2021). Agência Nacional de Petróleo, Gás Natural e Biocombustíveis—ANP (Brasil). Brazilian Statistical Yearbook for Oil, Natural Gas and Biofuels—2021. http://www.anp.gov.br/conteudo-do-menu-superior/31-dados-abertos/6010-anuario-estatistico-2020-open-data
[5]
Buth, D. F. (2009). Degradação fotocatalítica da tetraciclina em solução aquosa empregando TiO2 suportado. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul.
[6]
Companhia Ambiental do Estado de São Paulo—CETESB (2014). List of Contaminated and Rehabilitated Areas in the State of São Paulo (p. 14).
[7]
Companhia Ambiental do Estado de São Paulo—CETESB (2021). Contaminated Areas Management Manual. http://areascontaminadas.cetesb.sp.gov.br/manual-de-gerenciamento/
[8]
DATAGEO (2021). São Paulo Environmental System. https://datageo.ambiente.sp.gov.br/app/?ctx=DATAGEO
[9]
Dias, S. P., Vaghetti, J. P., Lima, É. C., & Brasil, J. L. (2016). Analytical Chemistry: Essential Theory and Practice. Bookman.
[10]
Dórea, H. S., Bispo, J. R. L., Aragão, K. A. S., Cunha, B. B., Navickiene, S., Alves, J. P. H. et al. (2006). Analysis of BTEX, PAHs and Metals in the Oilfield Produced Water in the State of Sergipe, Brazil. Microchemical Journal, 85, 234-238. https://doi.org/10.1016/j.microc.2006.06.002
[11]
El-Aswar, E. I., Ibrahim, S. S., Abdallah, Y.R., & Elsharkawy, K. (2024) Removal of Ciprofloxacin and Heavy Metals from Water by Bentonite/Activate Carbon Composite: Ki-Netic, Isotherm, Thermodynamic and Breakthrough Curve Modeling Studies. Journal of Molecular Liquids, 403, Article ID: 124821. https://doi.org/10.1016/j.molliq.2024.124821
[12]
Ferro, M. D. (2024). Utilização de TiO2 microestruturado com biocarvão para desin-fecção solar catalítica de efluentes contaminadas por microrganismos. Ph.D. Thesis, Instituto de Pesquisas Energéticas e Nucleares, IPEN. http://repositorio.ipen.br/
[13]
Kotani, O. P. (2023). Utilização do TiO2-Diatomito em processos de fotodesinfecção em águas contaminadas por bactérias. Ph.D. Thesis, Instituto de Pesquisas Energáticas e Ncleares, IPEN-CNEN. http://repositorio.ipen.br/(01/10/2024)
[14]
Luiz, A. M. (1985). How to Take Advantage of Solar Energy (p. 191). Editora Edgard Blücher Ltda.
[15]
Ortiz, N., Silva, A., Lima, G. N. S., & Hyppolito, F. P. (2018). Using Solar-TiO2 and Biocarbon to Decompose and Adsorb Amoxicillin from Polluted Waters. International Journal of Chemistry, 10, 131-136. https://doi.org/10.5539/ijc.v10n1p131
[16]
Ray, S. K., Dhakal, D., Kshetri, Y. K., & Lee, S. W. (2017). Cu-α-NiMoO4 Photocatalyst for Degradation of Methylene Blue with Pathways and Antibacterial Performance. Journal of Photochemistry and Photobiology A: Chemistry, 348, 18-32. https://doi.org/10.1016/j.jphotochem.2017.08.004
[17]
Suri, R. P. S., Liu, J., Hand, D. W., Crittenden, J. C., Perram, D. L., & Mullins, M. E. (1993). Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water. Water Environment Research, 65, 665-673. https://doi.org/10.2175/wer.65.5.9
[18]
Vazzoler, A. (2019). Cálculo de reatores catalíticos gássólido. Volume 1.