Beauvericin (BEA) is a mycotoxin produced by Beauveria bassiana, through a non-ribosomal peptide synthase, known as beauvericin synthetase (bbBeas). BEA has a wide variety of biological activities, including insecticide, antimicrobial, antifungal, and antitumor. It cannot be produced by chemical synthesis, so solid-state fermentation (SSF) is an adequate strategy for its production. SSF has demonstrated high productivity of bioactive compounds (i.e., secondary metabolites) that exceed production in submerged fermentation. This study evaluates the expression levels of the bbBeas gene in solid-state fermentation using shrimp shells as a substrate. Four B. bassiana strains were employed and molecularly identified. A fragment of bbBeas gene was sequenced and analyzed to examine expression levels on SSF. Only amplified in two of four strains identified as B. bassiana due to variability in the gene. The highest bbBeas gene expression occurred on day 9 of SSF compared with days 6 and 12. Based on these results, the expression levels of the beauvericin synthase gene in the SSF allow us to identify the moment when there is the highest production of beauvericin in the solid culture and serve as a parameter for its subsequent scaling up of its production, as well as of other secondary metabolites.
References
[1]
Wang, Q. and Xu, L. (2012) Beauvericin, a Bioactive Compound Produced by Fungi: A Short Review. Molecules, 17, 2367-2377. https://doi.org/10.3390/molecules17032367
[2]
Dubovskiy, I.M. (2021) Host-Pathogen Interactions: Insects vs. Fungi. Journal of Fungi, 7, Article 162. https://doi.org/10.3390/jof7030162
[3]
Rachmawati, R., Kinoshita, H. and Nihira, T. (2018) Production of Insect Toxin Beauvericin from Entomopathogenic Fungi Cordyceps Militaris by Heterologous Expression of Global Regulator. AGRIVITA Journal of Agricultural Science, 40, 177-184. https://doi.org/10.17503/agrivita.v40i1.1727
[4]
Drapisa, H.J.C., Llames, L.C., Abellanosa, E.A., Vidar, W.S. and Macabeo, A.P.G. (2024) Differential Induction of Fusaric Acid in the Endophytic Fungus, Fusarium Sp. (UST-UVG10) by Three Different Media Results to Enhanced, Variable Anti-Staphylococcal and Antimycobacterial Activity. Studies in Fungi, 9, e007. https://doi.org/10.48130/sif-0024-0007
[5]
Sondergaard, T., Fredborg, M., Oppenhagen Christensen, A., Damsgaard, S., Kramer, N., Giese, H., et al. (2016) Fast Screening of Antibacterial Compounds from Fusaria. Toxins, 8, Article 355. https://doi.org/10.3390/toxins8120355
[6]
Vásquez Bonilla, J.N., Barranco Florido, E., Hamdan Partida, A., Ponce Alquicira, E. and Loera, O. (2024) Interaction of Beauvericin in Combination with Antibiotics against Methicillin-Resistant Staphylococcus Aureus and Salmonella Typhimurium. Toxicon, 243, Article 107713. https://doi.org/10.1016/j.toxicon.2024.107713
[7]
Zhang, L., Yan, K., Zhang, Y., Huang, R., Bian, J., Zheng, C., et al. (2007) High-Throughput Synergy Screening Identifies Microbial Metabolites as Combination Agents for the Treatment of Fungal Infections. Proceedings of the National Academy of Sciences, 104, 4606-4611. https://doi.org/10.1073/pnas.0609370104
[8]
Shin, C.-G., An, D.-G., Song, H.-H. and Lee, C. (2009) Beauvericin and Enniatins H, I and MK1688 Are New Potent Inhibitors of Human Immunodeficiency Virus Type-1 Integrase. The Journal of Antibiotics, 62, 687-690. https://doi.org/10.1038/ja.2009.102
[9]
Al Khoury, C., Bashir, Z., Tokajian, S., Nemer, N., Merhi, G. and Nemer, G. (2022) In Silico Evidence of Beauvericin Antiviral Activity against SARS-CoV-2. Computers in Biology and Medicine, 141, Article 105171. https://doi.org/10.1016/j.compbiomed.2021.105171
[10]
Tao, Y.-W., Lin, Y.-C. She, Z.-G., Lin, M.-T., Chen, P.-X. and Zhang, J.-Y. (2015) Anticancer Activity and Mechanism Investigation of Beauvericin Isolated from Secondary Metabolites of the Mangrove Endophytic Fungi. Anti-Cancer Agents in Medicinal Chemistry, 15, 258-266. https://doi.org/10.2174/1871520614666140825112255
[11]
Lu, C.-L., Lin, H.-I., Chen, B.-F. and Jow, G.-M. (2016) Beauvericin-Induced Cell Apoptosis through the Mitogen-Activated Protein Kinase Pathway in Human Nonsmall Cell Lung Cancer A549 Cells. The Journal of Toxicological Sciences, 41, 429-437. https://doi.org/10.2131/jts.41.429
[12]
Yahagi, H., Yahagi, T., Furukawa, M. and Matsuzaki, K. (2020) Antiproliferative and Antimigration Activities of Beauvericin Isolated from Isaria Sp. on Pancreatic Cancer Cells. Molecules, 25, Article 4586. https://doi.org/10.3390/molecules25194586
[13]
Heilos, D., Rodríguez-Carrasco, Y., Englinger, B., Timelthaler, G., Van Schoonhoven, S., Sulyok, M., et al. (2017) The Natural Fungal Metabolite Beauvericin Exerts Anticancer Activity inVivo: A Pre-Clinical Pilot Study. Toxins, 9, Article 258. https://doi.org/10.3390/toxins9090258
[14]
Sivanathan, S. and Scherkenbeck, J. (2014) Cyclodepsipeptides: A Rich Source of Biologically Active Compounds for Drug Research. Molecules, 19, 12368-12420. https://doi.org/10.3390/molecules190812368
[15]
Urbaniak, M., Waśkiewicz, A., Koczyk, G., Błaszczyk, L. and Stępień, Ł. (2020) Divergence of Beauvericin Synthase Gene among Fusarium and Trichoderma Species. Journal of Fungi, 6, Article 288. https://doi.org/10.3390/jof6040288
[16]
Süssmuth, R.D. and Mainz, A. (2017) Nonribosomal Peptide Synthesis—Principles and Prospects. AngewandteChemie International Edition, 56, 3770-3821. https://doi.org/10.1002/anie.201609079
[17]
Xu, L.-J., Liu, Y.-S., Zhou, L.-G. and Wu, J.-Y. (2010) Modeling of Fusarium redolens Dzf2 Mycelial Growth Kinetics and Optimal Fed-Batch Fermentation for Beauvericin Production. Journal of Industrial Microbiology & Biotechnology, 38, 1187-1192. https://doi.org/10.1007/s10295-010-0895-2
[18]
Rana, S., Singh, S.K. and Dufossé, L. (2022) Multigene Phylogeny, Beauvericin Production and Bioactive Potential of Fusarium Strains Isolated in India. Journal of Fungi, 8, Article 662. https://doi.org/10.3390/jof8070662
[19]
Vásquez-Bonilla, J.N., Barranco-Florido, J.E., Ponce-Alquicira, E., Rincón-Guevara, M.A. and Loera, O. (2022) Improvement of Beauvericin Production by Fusarium oxysporum AB2 under Solid-State Fermentation Using an Optimised Liquid Medium and Co-Cultures. Mycotoxin Research, 38, 175-183. https://doi.org/10.1007/s12550-022-00458-y
[20]
de la Rosa, O., Múñiz-Marquez, D.B., Contreras-Esquivel, J.C., Wong-Paz, J.E., Rodríguez-Herrera, R. and Aguilar, C.N. (2020) Improving the Fructooligosaccharides Production by Solid-State Fermentation. Biocatalysis and Agricultural Biotechnology, 27, Article 101704. https://doi.org/10.1016/j.bcab.2020.101704
[21]
El-Housseiny, G.S., Ibrahim, A.A., Yassien, M.A. and Aboshanab, K.M. (2021) Production and Statistical Optimization of Paromomycin by Streptomyces rimosus NRRL 2455 in Solid State Fermentation. BMC Microbiology, 21, Article No. 34. https://doi.org/10.1186/s12866-021-02093-6
[22]
dos Anjos, T.N., Wojcieszak, R., Leite, S.G.F. and Itabaiana Jr., I. (2024) Valorization of Residual Babassu Mesocarp Biomass to Obtain Aroma Compounds by Solid-State Fermentation. Microbiology Research, 15, 1386-1405. https://doi.org/10.3390/microbiolres15030093
[23]
Gonçalves, H.B., Jorge, J.A. and Guimarães, L.H.S. (2016) Production and Characterization of an Extracellular β-d-Fructofuranosidase from Fusarium graminearum during Solid-State Fermentation Using Wheat Bran as a Carbon Source. Journal of Food Biochemistry, 40, 655-663. https://doi.org/10.1111/jfbc.12253
[24]
Pérez-Sánchez, A., Uribe-Carvajal, S., Cabrera-Orefice, A. and Barrios-González, J. (2017) Key Role of Alternative Oxidase in Lovastatin Solid-State Fermentation. Applied Microbiology and Biotechnology, 101, 7347-7356. https://doi.org/10.1007/s00253-017-8452-9
[25]
Jain, A., Morlok, C.K. and Henson, J.M. (2012) Comparison of Solid-State and Submerged-State Fermentation for the Bioprocessing of Switchgrass to Ethanol and Acetate by Clostridium phytofermentans. Applied Microbiology and Biotechnology, 97, 905-917. https://doi.org/10.1007/s00253-012-4511-4
[26]
Arora, S., Rani, R. and Ghosh, S. (2018) Bioreactors in Solid State Fermentation Technology: Design, Applications and Engineering Aspects. Journal of Biotechnology, 269, 16-34. https://doi.org/10.1016/j.jbiotec.2018.01.010
[27]
Lima‐Pérez, J., Rodríguez‐Gómez, D., Loera, O., Viniegra‐González, G. and López‐Pérez, M. (2017) Differences in Growth Physiology and Aggregation of Pichia pastoris Cells between Solid‐State and Submerged Fermentations under Aerobic Conditions. Journal of Chemical Technology & Biotechnology, 93, 527-532. https://doi.org/10.1002/jctb.5384
[28]
Stielow, J.B., Lévesque, C.A., Seifert, K.A., Meyer, W., Irinyi, L., Smits, D., et al. (2015) One Fungus, Which Genes? Development and Assessment of Universal Primers for Potential Secondary Fungal DNA Barcodes. Persoonia-Molecular Phylogeny and Evolution of Fungi, 35, 242-263. https://doi.org/10.3767/003158515x689135
[29]
Barranco-Florido, J.E., Alatorre-Rosas, R., Gutiérrez-Rojas, M., Viniegra-González, G. and Saucedo-Castañeda, G. (2002) Criteria for the Selection of Strains of Entomopathogenic Fungi Verticillium lecanii for Solid State Cultivation. Enzyme and Microbial Technology, 30, 910-915. https://doi.org/10.1016/s0141-0229(02)00032-7
[30]
Jiang, X., Chen, Y.J. and Shi, L.G. (2013) Determination of Fusarium Mycotoxin Beauvericin in Bombyx Batryticatus by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Asian Journal of Chemistry, 25, 6693-6696. https://doi.org/10.14233/ajchem.2013.14424
[31]
Jirakkakul, J., Punya, J., Pongpattanakitshote, S., Paungmoung, P., Vorapreeda, N., Tachaleat, A., et al. (2008) Identification of the Nonribosomal Peptide Synthetase Gene Responsible for Bassianolide Synthesis in Wood-Decaying Fungus Xylaria Sp. BCC1067. Microbiology, 154, 995-1006. https://doi.org/10.1099/mic.0.2007/013995-0
Zhang, T., Jia, X.P., Zhuo, Y., Liu, M., Gao, H., Liu, J.T., et al. (2012) Cloning and Characterization of a Novel 2-Ketoisovalerate Reductase from the Beauvericin Producer Fusarium proliferatum LF061. BMC Biotechnology, 12, Article No. 55. https://doi.org/10.1186/1472-6750-12-55
[34]
Zobel, S., Boecker, S., Kulke, D., Heimbach, D., Meyer, V. and Süssmuth, R.D. (2016) Reprogramming the Biosynthesis of Cyclodepsipeptide Synthetases to Obtain New Enniatins and Beauvericins. ChemBioChem, 17, 283-287. https://doi.org/10.1002/cbic.201500649
[35]
Liuzzi, V., Mirabelli, V., Cimmarusti, M., Haidukowski, M., Leslie, J., Logrieco, A., et al. (2017) Enniatin and Beauvericin Biosynthesis in Fusarium species: Production Profiles and Structural Determinant Prediction. Toxins, 9, Article 45. https://doi.org/10.3390/toxins9020045
[36]
Chen, A.H., Wang, Y.L., Shao, Y., Zhou, Q.M., Chen, S.L., Wu, Y.H., et al. (2017) Genes involved in Beauveria bassiana infection to Galleria mellonella. Archives of Microbiology, 200, 541-552. https://doi.org/10.1007/s00203-017-1456-0
[37]
Lai, Y.L., Chen, H.A., Wei, G., Wang, G.D., Li, F. and Wang, S.B. (2017) In Vivo Gene Expression Profiling of the Entomopathogenic Fungus Beauveria bassiana Elucidates Its Infection Stratagems in Anopheles mosquito. Science China Life Sciences, 60, 839-851. https://doi.org/10.1007/s11427-017-9101-3
[38]
Moretti, A., Mulé, G., Ritieni, A., Láday, M., Stubnya, V., Hornok, L., et al. (2008) Cryptic Subspecies and Beauvericin Production by Fusarium subglutinans from Europe. International Journal of Food Microbiology, 127, 312-315. https://doi.org/10.1016/j.ijfoodmicro.2008.08.003
[39]
Yang, L., Li, J.T., Yang, L., Wang, X.F., Xiao, S., Xiong, S.J., et al. (2023) Altered Gene Expression of the Parasitoid Pteromaluspuparum after Entomopathogenic fungusBeauveria bassiana Infection. International Journal of Molecular Sciences, 24, Article 17030. https://doi.org/10.3390/ijms242317030
[40]
Xu, S.-Y., Mohamed, R.A., Yu, L., Ying, S.-H. and Feng, M.-G. (2024) Cla4A, a Novel Regulator of Gene Expression Networks Required for Asexual and Insect-Pathogenic Lifecycles of Beauveria bassiana. International Journal of Molecular Sciences, 25, Article 6410. https://doi.org/10.3390/ijms25126410
[41]
Barranco-Florido, E., García-Hernández, L.A., Rodríguez-Navarro, S., Flores-Macías, A. and Ramos-López, M.A. (2013) Regulation of Gene Expression in Entomopathogenic fungi in Three Different Environmental Conditions: A Review. African Journal of Biotechnology, 12, 989-995.
[42]
Michels, J., Appel, E. and Gorb, S.N. (2016) Functional Diversity of Resilin in Arthropoda. Beilstein Journal of Nanotechnology, 7, 1241-1259. https://doi.org/10.3762/bjnano.7.115
[43]
Farinas, C.S. (2015) Developments in Solid-State Fermentation for the Production of Biomass-Degrading Enzymes for the Bioenergy Sector. Renewable and Sustainable Energy Reviews, 52, 179-188. https://doi.org/10.1016/j.rser.2015.07.092
[44]
Karimi, F., Mazaheri, D., Saei Moghaddam, M., Mataei Moghaddam, A., Sanati, A.L. and Orooji, Y. (2021) Solid-State Fermentation as an Alternative Technology for Cost-Effective Production of Bioethanol as Useful Renewable Energy: A Review. Biomass Conversion and Biorefinery, 1-17. https://doi.org/10.1007/s13399-021-01875-2