全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Precision Limit for Observation: The Bridge for Quantum Classical Transitions

DOI: 10.4236/jqis.2025.151004, PP. 59-74

Keywords: Precision Limit, Measurement, Quantum Mechanics, Wave-Function, Quantum Indeterminacy, Hidden Variable Theories

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quantum mechanics (QM) is an extremely successful theory; however, there is still no consensus regarding its interpretation. Among the controversies, the quantum classical transitions are the outstanding questions. In this paper, starting from measurement theory, we discuss the role that the precision limit for observation plays in QM and attempt to lubricate the relationship between the precision limit and some unique characters and nature of QM. By reviewing Bohmian mechanics, one of the nonlocal hidden variable theories, we discuss the possibility of restoring determinism in QM. We conclude that it is the existence of the precision limit that makes it impossible to restore determinism in QM, and it is the root that makes QM different from classical physics. Finally, the boundary between the so-called classical and quantum worlds is discussed. We hope these philosophical arguments can provide a kind of epistemic understanding for QM.

References

[1]  Born, M. (1926) Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 38, 803-827.
https://doi.org/10.1007/BF01397184
[2]  Einstein, A. (1936) Physics and Reality. Journal of the Franklin Institute, 221, 349-382.
https://doi.org/10.1016/S0016-0032(36)91047-5
[3]  Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780.
https://doi.org/10.1103/PhysRev.47.777
[4]  Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics Physique Fizika, 1, 195-200.
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
[5]  Clauser, J.F., Horne, M.A., Shimony, A. and Holt, R.A. (1969) Proposed Experiment to Test Local Hidden-Variable theories. Physical Review Letters, 23, 880-884.
https://doi.org/10.1103/PhysRevLett.23.880
[6]  Freedman, S.J. and Clauser, J.F. (1972) Experimental Test of Local Hidden-Variable Theories. Physical Review Letters, 28, 938-941.
https://doi.org/10.1103/PhysRevLett.28.938
[7]  Aspect, A., Grangier, P. and Roger, G. (1981) Experimental Tests of Realistic Local Theories via Bell’s Theorem. Physical Review Letters, 47, 460-463.
https://doi.org/10.1103/PhysRevLett.47.460
[8]  Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. and Wehner, S. (2014) Bell Nonlocality. Reviews of Modern Physics, 86, 419-478.
https://doi.org/10.1103/RevModPhys.86.419
[9]  The BIG Bell Test Collaboration (2018) Challenging Local Realism with Human Choices. Nature, 557, 212-216.
https://doi.org/10.1038/s41586-018-0085-3
[10]  Leggett, A.J. (2003) Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem. Foundations of Physics, 33, 1469-1493.
https://doi.org/10.1023/A:1026096313729
[11]  Egg, M. (2013) The Foundational Significance of Leggett’s Non-Local Hidden-Variable Theories. Foundations of Physics, 43, 872-880.
https://doi.org/10.1007/s10701-013-9723-7
[12]  Branciard, C. (2013) Bell’s Local Causality, Leggett’s Crypto-Nonlocality, and Quantum Separability Are Genuinely Different Concepts. Physical Review A, 88, Article 042113.
https://doi.org/10.1103/PhysRevA.88.042113
[13]  Laudisa, F. (2014) On Leggett Theories: A Reply. Foundations of Physics, 44, 296-304.
https://doi.org/10.1007/s10701-014-9787-z
[14]  Branciard, C., Brunner, N., Gisin, N., Lamas-Linares, A., Ling, A., Kurtsiefer, C. and Scarani, V. (2008) Testing Quantum Correlations versus Single-Particle Properties within Leggett’s Model and Beyond. Nature Physics, 4, 681-685.
https://doi.org/10.1038/nphys1020
[15]  Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., Żukowski, M., Aspelmeyer, M. and Zeilinger, A. (2007) An Experimental Test of Non-Local Realism. Nature, 446, 871-875.
https://doi.org/10.1038/nature05677
[16]  Weyl, H. (1950) The Theory of Groups and Quantum Mechanics. Courier Corporation.
[17]  Von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press.
[18]  Dirac, P.A.M. (1958) The Principles of Quantum Mechanics. 4th Edition, Oxford University Press.
[19]  Feynman, R.P., Leighton, R.B. and Sands, M.L. (1965) The Feynman Lectures on Physics. Vol. 3, Quantum Mechanics, Addison-Wesley.
[20]  Pauling, L. and Wilson, E.B. (2012) Introduction to Quantum Mechanics with Applications to Chemistry. Courier Corporation.
[21]  Bohr, N. (1928) The Quantum Postulate and the Recent Development of Atomic Theory. Nature, 121, 580-591.
https://doi.org/10.1038/121580a0
[22]  de Broglie, L. (1927) La mécanique ondulatoire et la structure de la matière et du rayonnement. Journal de Physique et le Radium, 8, 225-241.
https://doi.org/10.1051/jphysrad:0192700805022500
[23]  Bohm, D. (1952) A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variable. I. Physical Review, 85, 166-179.
https://doi.org/10.1103/PhysRev.85.166
[24]  Campbell, N.R. (1928) An Account of the Principles of Measurement and Calculation. Longmans, Green and Company, Limited.
[25]  Braunstein, S.L. (1992) Quantum Limits on Precision Measurements of Phase. Physical Review Letters, 69, 3598-3601.
https://doi.org/10.1103/PhysRevLett.69.3598
[26]  Baso, D.N., Averitt, R.D. and Hsieh, D. (2017) Towards Properties on Demand in Quantum Materials. Nature Materials, 16, 1077-1088.
https://doi.org/10.1038/nmat5017
[27]  Tsao, Y.H. (1984) Uncertainty Principle in Frequency-Time Methods. The Journal of the Acoustical Society of America, 75, 1532-1540.
https://doi.org/10.1121/1.390824
[28]  Planck, M. (1900) On an Improvement of Wien’s Equation for the Spectrum. Annalen der Physik, 1, 719-721.
https://doi.org/10.1002/andp.19003060410
[29]  Planck, M. (1901) On the Law of Distribution of Energy in the Normal Spectrum. Annalen der Physik, 4, 553.
https://doi.org/10.1002/andp.19013090310
[30]  Schrödinger, E. (1935) Die Gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 23, 844-849.
https://doi.org/10.1007/BF01491987
[31]  Gerry, C. and Knight, P. (2005) Introductory Quantum Optics. Cambridge University Press.
[32]  Born, M. (1927) Physical Aspects of Quantum Mechanics. Nature, 119, 354-357.
https://doi.org/10.1038/119354a0
[33]  Bohm, D. (1953) Proof That Probability Density Approaches in Causal Interpretation of the Quantum Theory. Physical Review, 89, 458-466.
https://doi.org/10.1103/PhysRev.89.458
[34]  Philippidis, C., Dewdney, C. and Hiley, B.J. (1979) Quantum Interference and the Quantum Potential. Nuovo Cimento B, 52, 15-28.
https://doi.org/10.1007/BF02743566
[35]  Song, Y., Guo, F.M., Li, S.Y., Chen, J.G., Zeng, S.L. and Yang, Y.J. (2012) Investigation of the Generation of High-Order Harmonics through Bohmian Trajectories. Physical Review A, 86, Article 033424.
https://doi.org/10.1103/PhysRevA.86.033424
[36]  Song, Y., Li, S.Y., Liu, X.S., Guo, F.M. and Yang, Y.J. (2013) Investigation of Atomic Radiative Recombination Process by Bohmian Mechanics Method. Physical Review A, 88, Article 053419.
https://doi.org/10.1103/PhysRevA.88.053419
[37]  Wei, S.S., Li, S.Y., Guo, F.M. and Yang, Y.J. (2013) Dynamic Stabilization of Ionization for an Atom Irradiated by High-Frequency Laser Pulses Studied with the Bohmian-Trajectory Scheme. Physical Review A, 87, Article 063418.
https://doi.org/10.1103/PhysRevA.87.063418
[38]  Song, Y., Yang, Y., Guo, F. and Li, S. (2017) Revisiting the Time-Dependent Ionization Process through the Bohmian-Mechanics Method. Journal of Physics B-Atomic Molecular and Optical Physics, 50, Article 095003.
https://doi.org/10.1088/1361-6455/aa630d
[39]  Bohr, N., Kramers, H.A. and Slater, J.C. (1924) LXXVI. The Quantum Theory of Radiation. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47, 785-802.
https://doi.org/10.1080/14786442408565262
[40]  Einstein, A. (1923) Bietet die feldtheorie Möglichkeiten für die Lösung des Quantenproblems? In: Trageser, W., Ed., Sitzungsberichte der Preussischen Akademie der Wissenschaften, Springer Spektrum, 359-364.
[41]  Spegel-Lexne, D., Gómez, S., Argillander, J., Pawłowski, M., Dieguez, P.R., Alarcón, A. and Xavier, G.B. (2024) Experimental Demonstration of the Equivalence of Entropic Uncertainty with Wave-Particle Duality. Science Advances, 10, eadr2007.
https://doi.org/10.1126/sciadv.adr2007
[42]  Greenstein, G. and Zajonc, A. (2006) The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics. Jones and Bartlett Learning.
[43]  Feynman, R.P. (1957) Superfluidity and Superconductivity. Reviews of Modern Physics, 29, 205-212.
https://doi.org/10.1103/RevModPhys.29.205
[44]  Tisza, L. (1950) Theory of Superconductivity. Physical Review, 80, 717-726.
https://doi.org/10.1103/PhysRev.80.717
[45]  Ginzburg, V.L. and Landau, L.D. (2009) On the Theory of Superconductivity. Springer, 113-137.
https://doi.org/10.1007/978-3-540-68008-6_4
[46]  Landau, L. (1949) On the Theory of Superfluidity. Physical Review, 75, 884-885.
https://doi.org/10.1103/PhysRev.75.884
[47]  Leggett, A.J. (1999) Superfluidity. Reviews of Modern Physics, 71, S318-S323.
https://doi.org/10.1103/RevModPhys.71.S318
[48]  Packard, R. (2006) Berkeley Experiments on Superfluid Macroscopic Quantum Effects. AIP Conference Proceedings, 850, 3-17.
https://doi.org/10.1063/1.2354592
[49]  Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E. and Cornell, E.A. (1995) Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science, 269, 198-201.
https://doi.org/10.1126/science.269.5221.198
[50]  Ruostekoski, J., Collett, M.J., Graham, R. and Walls, D.F. (1998) Macroscopic Superpositions of Bose-Einstein Condensates. Physical Review A, 57, 511-517.
https://doi.org/10.1103/PhysRevA.57.511
[51]  Morsch, O. and Markus, O. (2006) Dynamics of Bose-Einstein Condensates in Optical Lattices. Reviews of Modern Physics, 78, 179-215.
https://doi.org/10.1103/RevModPhys.78.179

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133