全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Update to the “New Minimal Standard Model”

DOI: 10.4236/ijaa.2025.151004, PP. 43-63

Keywords: New Minimal Standard Model, Dark Matter, Neutrino Oscillations, Leptogenesis, Inflation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Standard Model of quarks and leptons is a great achievement. However, this model is incomplete: it does not include the observed dark matter, neutrino masses and mixings, the matter-antimatter asymmetry of the universe, the current acceleration of the expansion of the universe, nor inflation. We seek a minimal extension of the Standard Model to account for these observations. We constrain its parameters and discuss potential tests for this updated “New Minimal Standard Model”.

References

[1]  Davoudiasl, H., Kitano, R., Li, T. and Murayama, H. (2005) The New Minimal Standard Model. Physics Letters B, 609, 117-123.
https://doi.org/10.1016/j.physletb.2005.01.026
[2]  Navas, S., et al. (2024) Review of Particle Physics. Physical Review D, 110, Article ID: 030001.
[3]  Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Dwarf Galaxy Rotation Curves. International Journal of Astronomy and Astrophysics, 12, 363-381.
https://doi.org/10.4236/ijaa.2022.124021
[4]  Hoeneisen, B. (2024) Measurements of the Dark Matter Mass, Temperature and Spin. International Journal of Astronomy and Astrophysics, 14, 184-202.
https://doi.org/10.4236/ijaa.2024.143012
[5]  Lapi, A., Salucci, P. and Danese, L. (2018) Precision Scaling Relations for Disk Galaxies in the Local Universe. The Astrophysical Journal, 859, Article 2.
https://doi.org/10.3847/1538-4357/aabf35
[6]  Viel, M., Lesgourgues, J., Haehnelt, M.G., Matarrese, S. and Riotto, A. (2005) Constraining Warm Dark Matter Candidates Including Sterile Neutrinos and Light Gravitinos with WMAP and the Lyman-α Forest. Physical Review D, 71, Article ID: 063534.
https://doi.org/10.1103/physrevd.71.063534
[7]  Iršič, V., Viel, M., Haehnelt, M.G., Bolton, J.S., Molaro, M., Puchwein, E., et al. (2024) Unveiling Dark Matter Free Streaming at the Smallest Scales with the High Redshift Lyman-α Forest. Physical Review D, 109, Article ID: 043511.
https://doi.org/10.1103/physrevd.109.043511
[8]  MacInnis, A. and Sehgal, N. (2024) CMB-HD as a Probe of Dark Matter on Sub-Galactic Scales. arXiv: 2405.12220.
[9]  Despali, G., et al. (2025) Introducing the AIDA-TNG Project: Galaxy Formation in Alternative Dark Matter Models. arXiv: 2501.12439.
[10]  Hoeneisen, B. (2023) Understanding the Formation of Galaxies with Warm Dark Matter. Journal of Modern Physics, 14, 1741-1754.
https://doi.org/10.4236/jmp.2023.1413103
[11]  Hogan, C.J. and Dalcanton, J.J. (2000) New Dark Matter Physics: Clues from Halo Structure. Physical Review D, 62, Article ID: 063511.
https://doi.org/10.1103/physrevd.62.063511
[12]  Hoeneisen, B. (2025) Why Do Galaxies Have Extended Flat Rotation Curves? International Journal of Astronomy and Astrophysics, 15, 1-10.
https://doi.org/10.4236/ijaa.2025.151001
[13]  D’Onofrio, M., Rummukainen, K. and Tranberg, A. (2014) Sphaleron Rate in the Minimal Standard Model. Physical Review Letters, 113, Article ID: 141602.
https://doi.org/10.1103/physrevlett.113.141602
[14]  Schwartz, M.D. (2013) Quantum Field Theory and the Standard Model. Cambridge University Press.
https://doi.org/10.1017/9781139540940
[15]  Gel’fand, I.M., Minlos, R.A. and Shapiro, Z.Y.A. (1963) Representations of the Rotation and Lorentz Groups and their Applications. Pergamon Press.
[16]  Hoeneisen, B. (2021) Active-Sterile Neutrino Oscillations and Leptogenesis. Journal of Modern Physics, 12, 1248-1266.
https://doi.org/10.4236/jmp.2021.129077
[17]  Xing, Z. and Zhao, Z. (2020) The Minimal Seesaw and Leptogenesis Models. arXiv: 2008.12090.
[18]  Casas, J.A. and Ibarra, A. (2001) Oscillating Neutrinos and μe, γ. Nuclear Physics B, 618, 171-204.
https://doi.org/10.1016/s0550-3213(01)00475-8
[19]  Manton, N.S. (2019) The Inevitability of Sphalerons in Field Theory. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377, Article ID: 20180327.
https://doi.org/10.1098/rsta.2018.0327
[20]  Rubakov, V.A. and Shaposhnikov, M.E. (1996) Electroweak Baryon Number Non-Conservation in the Early Universe and in High-Energy Collisions. Physics-Uspekhi, 39, 461-502.
https://doi.org/10.1070/pu1996v039n05abeh000145
[21]  Khlebnikov, S.Y. and Shaposhnikov, M.E. (1996) Melting of the Higgs Vacuum: Conserved Numbers at High Temperature. Physics Letters B, 387, 817-822.
https://doi.org/10.1016/0370-2693(96)01116-1
[22]  Davidson, S., Nardi, E. and Nir, Y. (2008) Leptogenesis. Physics Reports, 466, 105-177.
https://doi.org/10.1016/j.physrep.2008.06.002
[23]  Klaric, J., Shaposhnikov, M. and Timiryasov, I. (2021) Reconciling Resonant Leptogenesis and Baryogenesis via Neutrino Oscillations. Physical Review D, 104, Article ID: 055010.
https://doi.org/10.1103/physrevd.104.055010
[24]  Asaka, T. and Shaposhnikov, M. (2005) The νMSM, Dark Matter and Baryon Asymmetry. arXiv: 0505013.
[25]  Asaka, T., Blanchet, S. and Shaposhnikov, M. (2005) The νMSM, Dark Matter and Neutrino Masses. arXiv: 0503065.
[26]  Akhmedov, E. (2019) Quantum Mechanics Aspects and Subtleties of Neutrino Oscillations. arXiv: 1901.05232.
[27]  Beuthe, M. (2002) Towards a Unique Formula for Neutrino Oscillations in Vacuum. Physical Review D, 66, Article ID: 013003.
https://doi.org/10.1103/physrevd.66.013003
[28]  Halzen, F., Martin, A.D. and Mitra, N. (1985) Quarks and Leptons: An Introductory Course in Modern Particle physics. American Journal of Physics, 53, 287-287.
https://doi.org/10.1119/1.14146
[29]  Green, D. (2014) Inflation and the Higgs Scalar (Lecture Notes). arXiv: 1412.2107
[30]  Baumann, D. (2012) TASI Lectures on Inflation. arXiv: 0907.5424
[31]  Bezrukov, F. and Shaposhnikov, M. (2008) The Standard Model Higgs Boson as the Inflaton. Physics Letters B, 659, 703-706.
https://doi.org/10.1016/j.physletb.2007.11.072
[32]  Shaposhnikov, M., Shkerin, A. and Zell, S. (2021) Standard Model Meets Gravity: Electroweak Symmetry Breaking and Inflation. Physical Review D, 103, Article ID: 033006.
https://doi.org/10.1103/physrevd.103.033006
[33]  Hoeneisen, B. (2023) Exploring Inflation Options for Warm Dark Matter Coupled to the Higgs Boson. International Journal of Astronomy and Astrophysics, 13, 217-235.
https://doi.org/10.4236/ijaa.2023.133013
[34]  Buttazzo, D., Degrassi, G., Giardino, P.P., Giudice, G.F., Sala, F., Salvio, A., et al. (2013) Investigating the Near-Criticality of the Higgs Boson. Journal of High Energy Physics, 2013, Article No. 89.
https://doi.org/10.1007/jhep12(2013)089
[35]  Karukes, E.V. and Salucci, P. (2016) The Universal Rotation Curve of Dwarf Disc Galaxies. Monthly Notices of the Royal Astronomical Society, 465, 4703-4722.
https://doi.org/10.1093/mnras/stw3055

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133