The Standard Model of quarks and leptons is a great achievement. However, this model is incomplete: it does not include the observed dark matter, neutrino masses and mixings, the matter-antimatter asymmetry of the universe, the current acceleration of the expansion of the universe, nor inflation. We seek a minimal extension of the Standard Model to account for these observations. We constrain its parameters and discuss potential tests for this updated “New Minimal Standard Model”.
References
[1]
Davoudiasl, H., Kitano, R., Li, T. and Murayama, H. (2005) The New Minimal Standard Model. Physics Letters B, 609, 117-123. https://doi.org/10.1016/j.physletb.2005.01.026
[2]
Navas, S., et al. (2024) Review of Particle Physics. Physical Review D, 110, Article ID: 030001.
[3]
Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Dwarf Galaxy Rotation Curves. InternationalJournalofAstronomyandAstrophysics, 12, 363-381. https://doi.org/10.4236/ijaa.2022.124021
[4]
Hoeneisen, B. (2024) Measurements of the Dark Matter Mass, Temperature and Spin. InternationalJournalofAstronomyandAstrophysics, 14, 184-202. https://doi.org/10.4236/ijaa.2024.143012
[5]
Lapi, A., Salucci, P. and Danese, L. (2018) Precision Scaling Relations for Disk Galaxies in the Local Universe. TheAstrophysicalJournal, 859, Article 2. https://doi.org/10.3847/1538-4357/aabf35
[6]
Viel, M., Lesgourgues, J., Haehnelt, M.G., Matarrese, S. and Riotto, A. (2005) Constraining Warm Dark Matter Candidates Including Sterile Neutrinos and Light Gravitinos with WMAP and the Lyman-α Forest. PhysicalReviewD, 71, Article ID: 063534. https://doi.org/10.1103/physrevd.71.063534
[7]
Iršič, V., Viel, M., Haehnelt, M.G., Bolton, J.S., Molaro, M., Puchwein, E., et al. (2024) Unveiling Dark Matter Free Streaming at the Smallest Scales with the High Redshift Lyman-α Forest. PhysicalReviewD, 109, Article ID: 043511. https://doi.org/10.1103/physrevd.109.043511
[8]
MacInnis, A. and Sehgal, N. (2024) CMB-HD as a Probe of Dark Matter on Sub-Galactic Scales. arXiv: 2405.12220.
[9]
Despali, G., et al. (2025) Introducing the AIDA-TNG Project: Galaxy Formation in Alternative Dark Matter Models. arXiv: 2501.12439.
[10]
Hoeneisen, B. (2023) Understanding the Formation of Galaxies with Warm Dark Matter. JournalofModernPhysics, 14, 1741-1754. https://doi.org/10.4236/jmp.2023.1413103
[11]
Hogan, C.J. and Dalcanton, J.J. (2000) New Dark Matter Physics: Clues from Halo Structure. PhysicalReviewD, 62, Article ID: 063511. https://doi.org/10.1103/physrevd.62.063511
[12]
Hoeneisen, B. (2025) Why Do Galaxies Have Extended Flat Rotation Curves? InternationalJournalofAstronomyandAstrophysics, 15, 1-10. https://doi.org/10.4236/ijaa.2025.151001
[13]
D’Onofrio, M., Rummukainen, K. and Tranberg, A. (2014) Sphaleron Rate in the Minimal Standard Model. PhysicalReviewLetters, 113, Article ID: 141602. https://doi.org/10.1103/physrevlett.113.141602
[14]
Schwartz, M.D. (2013) Quantum Field Theory and the Standard Model. Cambridge University Press. https://doi.org/10.1017/9781139540940
[15]
Gel’fand, I.M., Minlos, R.A. and Shapiro, Z.Y.A. (1963) Representations of the Rotation and Lorentz Groups and their Applications. Pergamon Press.
[16]
Hoeneisen, B. (2021) Active-Sterile Neutrino Oscillations and Leptogenesis. JournalofModernPhysics, 12, 1248-1266. https://doi.org/10.4236/jmp.2021.129077
[17]
Xing, Z. and Zhao, Z. (2020) The Minimal Seesaw and Leptogenesis Models. arXiv: 2008.12090.
[18]
Casas, J.A. and Ibarra, A. (2001) Oscillating Neutrinos and μ→e, γ. NuclearPhysicsB, 618, 171-204. https://doi.org/10.1016/s0550-3213(01)00475-8
[19]
Manton, N.S. (2019) The Inevitability of Sphalerons in Field Theory. PhilosophicalTransactionsoftheRoyalSocietyA: Mathematical, PhysicalandEngineeringSciences, 377, Article ID: 20180327. https://doi.org/10.1098/rsta.2018.0327
[20]
Rubakov, V.A. and Shaposhnikov, M.E. (1996) Electroweak Baryon Number Non-Conservation in the Early Universe and in High-Energy Collisions. Physics-Uspekhi, 39, 461-502. https://doi.org/10.1070/pu1996v039n05abeh000145
[21]
Khlebnikov, S.Y. and Shaposhnikov, M.E. (1996) Melting of the Higgs Vacuum: Conserved Numbers at High Temperature. PhysicsLettersB, 387, 817-822. https://doi.org/10.1016/0370-2693(96)01116-1
[22]
Davidson, S., Nardi, E. and Nir, Y. (2008) Leptogenesis. PhysicsReports, 466, 105-177. https://doi.org/10.1016/j.physrep.2008.06.002
[23]
Klaric, J., Shaposhnikov, M. and Timiryasov, I. (2021) Reconciling Resonant Leptogenesis and Baryogenesis via Neutrino Oscillations. PhysicalReviewD, 104, Article ID: 055010. https://doi.org/10.1103/physrevd.104.055010
[24]
Asaka, T. and Shaposhnikov, M. (2005) The νMSM, Dark Matter and Baryon Asymmetry. arXiv: 0505013.
[25]
Asaka, T., Blanchet, S. and Shaposhnikov, M. (2005) The νMSM, Dark Matter and Neutrino Masses. arXiv: 0503065.
[26]
Akhmedov, E. (2019) Quantum Mechanics Aspects and Subtleties of Neutrino Oscillations. arXiv: 1901.05232.
[27]
Beuthe, M. (2002) Towards a Unique Formula for Neutrino Oscillations in Vacuum. PhysicalReviewD, 66, Article ID: 013003. https://doi.org/10.1103/physrevd.66.013003
[28]
Halzen, F., Martin, A.D. and Mitra, N. (1985) Quarks and Leptons: An Introductory Course in Modern Particle physics. AmericanJournalofPhysics, 53, 287-287. https://doi.org/10.1119/1.14146
[29]
Green, D. (2014) Inflation and the Higgs Scalar (Lecture Notes). arXiv: 1412.2107
[30]
Baumann, D. (2012) TASI Lectures on Inflation. arXiv: 0907.5424
[31]
Bezrukov, F. and Shaposhnikov, M. (2008) The Standard Model Higgs Boson as the Inflaton. PhysicsLettersB, 659, 703-706. https://doi.org/10.1016/j.physletb.2007.11.072
[32]
Shaposhnikov, M., Shkerin, A. and Zell, S. (2021) Standard Model Meets Gravity: Electroweak Symmetry Breaking and Inflation. PhysicalReviewD, 103, Article ID: 033006. https://doi.org/10.1103/physrevd.103.033006
[33]
Hoeneisen, B. (2023) Exploring Inflation Options for Warm Dark Matter Coupled to the Higgs Boson. InternationalJournalofAstronomyandAstrophysics, 13, 217-235. https://doi.org/10.4236/ijaa.2023.133013
[34]
Buttazzo, D., Degrassi, G., Giardino, P.P., Giudice, G.F., Sala, F., Salvio, A., et al. (2013) Investigating the Near-Criticality of the Higgs Boson. JournalofHighEnergyPhysics, 2013, Article No. 89. https://doi.org/10.1007/jhep12(2013)089
[35]
Karukes, E.V. and Salucci, P. (2016) The Universal Rotation Curve of Dwarf Disc Galaxies. MonthlyNoticesoftheRoyalAstronomicalSociety, 465, 4703-4722. https://doi.org/10.1093/mnras/stw3055