全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

智慧医养平台的高职康养专业学生慢性病管理能力培养研究
Research on the Cultivation of Chronic Disease Management Ability of Higher Vocational Health Care Students Using a Smart Medical and Nursing Platform

DOI: 10.12677/ve.2025.143136, PP. 142-149

Keywords: 智慧医养平台,高职教育,康养专业,慢性病管理,教学改革
Smart Medical and Nursing Platform
, Higher Vocational Education, Health Care Major, Chronic Disease Management, Teaching Reform

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探讨智慧医养平台在提升高职康养专业学生慢性病管理能力中的应用效果。方法:采用分层抽样法选取某高职院校120名学生,随机分为实验组(智慧平台全流程教学)与三个对照组(传统教学/混合教学/常规课程)。依托“云–边–端”协同架构的智慧医养平台,集成医用可穿戴设备(BioHarness 3.0)、Unity3D虚拟养老院场景(83种情境还原度)及XGBoost能力成长模型,实施“四阶螺旋训练法”:①5G+AR虚拟仿真;②多病种案例推演;③真实数据流接入;④跨学科协作决策。通过过程性评价(平台数据追踪)与终结性评价(临床实践考核)相结合,运用多元回归分析能力提升关键因素。结果:实验组慢性病管理能力总分(85.73 ± 7.24)显著高于所有对照组(vs.对照1:75.42 ± 7.86,P < 0.01),其中操作技能维度优势最显著(32.46 ± 3.14 vs. 27.85 ± 3.52)。平台使用频率(β = 0.425)与师生互动次数(β = 0.386)共同解释76.7%的能力变异量,高频次“数据–决策”闭环训练使技能迁移效率提升40%。伦理决策模块得分达4.32 ± 0.56 (5分制),跨学科认知网络构建效率较传统教学提高18.7%。结论:智慧医养平台通过动态数据采集、虚拟情境还原与个性化路径规划三重机制,有效突破传统实训模式瓶颈。建议后续重点开发基于生成式AI的智能辅导系统,建立“院校–企业–社区”协同的开放平台生态,推动康养教育向数字智能范式转型,为应对老龄化社会提供可持续人才支撑。
Objective: To explore the application effect of a smart medical and nursing platform in improving the chronic disease management ability of higher vocational health care students. Methods: Using stratified sampling, 120 students from a vocational college were randomly divided into an experimental group (full-process smart platform teaching) and three control groups (traditional teaching/hybrid teaching/regular courses). Leveraging a “cloud-edge-device” collaborative smart healthcare platform integrating medical wearables (BioHarness 3.0), Unity3D virtual nursing home scenarios (83 situational restorations), and XGBoost capability growth models, we implemented the “Four-stage Spiral Training Method”: ① 5G + AR virtual simulation; ② multi-disease case deduction; ③ real data flow integration; ④ interdisciplinary collaborative decision-making. Through combined process evaluation (platform data tracking) and summative evaluation (clinical practice assessment), multiple regression analysis identified key capability improvement factors. RESULTS The experimental group’s total chronic disease management score (85.73 ± 7.24) significantly exceeded all controls (vs. control 1: 75.42 ± 7.86, P < 0.01), with operational skills showing the greatest advantage (32.46 ± 3.14 vs. 27.85 ± 3.52). Platform usage frequency (β = 0.425) and teacher-student interactions (β = 0.386) jointly explained 76.7% of capability variance. High-frequency “data-decision” loop training improved skill transfer efficiency by 40%.

References

[1]  World Health Organization (2022) Global Status Report on Noncommunicable Diseases 2022. WHO Press, 17-29.
[2]  国家卫生健康委员会. 中国居民慢性病与营养状况报告(2023) [R]. 北京: 人民卫生出版社, 2023.
[3]  WHO (2020) Innovative Care for Chronic Conditions: Building Blocks for Action. WHO.
[4]  教育部等九部门. 职业教育提质培优行动计划(2023-2025年) [Z]. 教职成〔2023〕1号, 2023-03-15.
[5]  于海燕, 娄瑱, 李菁. 浅析基于虚拟仿真技术的护育康养专业群实训研究[J]. 卫生职业教育, 2024, 42(23): 60-63.
[6]  Wagner, S., Braunreuther, S and Reinhart, G. (2021) Digital Twin Applications in geriatric Care Education: A German Case Study. Journal of Intelligent Manufacturing, 32, 1389-1403.
[7]  Johns Hopkins Center for Health Security (2022) GERONTE platform White Paper: AR-Enhanced Clinical Training. JHU Press, 45-58.
[8]  Frank, J.R., Snell, L.S., Cate, O.T., Holmboe, E.S., Carraccio, C., Swing, S.R., et al. (2010) Competency-Based Medical Education: Theory to Practice. Medical Teacher, 32, 638-645.
https://doi.org/10.3109/0142159X.2010.501190
[9]  李雪琴, 王功成, 卢正红. PBL/CBL联合情景模拟在慢性病管理教学中的应用[J]. 中华全科医学, 2023, 21(3): 304-307.
[10]  韩忠东, 张兰华. 智慧医疗在康养人才培养中的应用研究[J]. 中国医学教育技术, 2021, 35(6): 654-658.
[11]  曹青青, 邱彦. 混合式教学在慢性病管理课程中的应用[J]. 中华医学教育探索, 2024, 23(2): 132-136.
[12]  张琼, 尹安春, 董春波, 等. 高强度功能训练对老年人影响的研究进展[J]. 解放军护理杂志, 2019, 36(4): 65-68.
[13]  和鑫, 汪妍洁. 智慧教育平台使用倦怠的影响因素研究[J]. 现代教育技术, 2022, 32(9): 87-94.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133