全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于人工蜂群算法优化BP神经网络的PID控制算法
Enhancement of BP Neural Network PID Control Algorithm through the Utilization of the Artificial Bee Colony Algorithm

DOI: 10.12677/etis.2025.21002, PP. 13-23

Keywords: PID控制器,人工蜂群算法,非线性控制,优化控制算法
PID Algorithm
, Artificial Bee Colony, Nonlinear Control System, Optimal Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于传统PID控制器面临参数调整繁琐、实时调适滞后、工况适应局限等挑战,本研究提出了一种以人工蜂群算法(Artificial Bee Colony, ABC)为核心的BP神经网络优化策略。研究表明,ABC算法对蜜蜂觅食行为的模拟机制,显著增强了BP神经网络在参数空间中的探索能力,有效维持了粒子群的多样性特征,构建起了高效的PID控制参数自适应调节框架,成功地克服了因参数失配而引发的控制效能递减难题,确保了控制系统在复杂工况下的稳定性与鲁棒性,为提升控制系统整体性能提供了坚实保障与有力支撑。ABC算法在提升BP神经网络性能上卓越可靠,为PID控制革新提供了依据与范式。
Due to the challenges associated with traditional PID controllers, such as the complexity of parameter tuning, delayed real-time adjustment, and limitations in adapting to varying operating conditions, this study proposes a BP neural network optimization strategy based on the Artificial Bee Colony (ABC) algorithm. The research demonstrates that the ABC algorithm, which simulates the foraging behavior of bees, significantly enhances the BP neural network’s exploration capabilities in the parameter space. This approach effectively maintains the diversity of the particle swarm, establishing an efficient self-adaptive adjustment framework for PID control parameters. As a result, it successfully overcomes the performance degradation caused by parameter mismatch, ensuring the stability and robustness of the control system under complex operating conditions. This study provides a solid foundation and strong support for improving the overall performance of the control system. The ABC algorithm proves to be highly reliable in enhancing BP neural network performance and offers both a theoretical basis and a paradigm for the innovation of PID control.

References

[1]  吴晨辉, 黄伟军, 华猛. 基于蝙蝠算法的发动机空燃比控制的研究[J]. 西南大学学报(自然科学版), 2019, 41(6): 135-140.
[2]  朱凤磊, 张立新, 胡雪, 等. 基于蝙蝠优化BP-PID算法的精准施肥控制系统研究[J]. 农业机械学报, 2023, 54(s1): 135-143, 171.
[3]  单港生. PID控制性能优化算法研究及应用[D]: [硕士学位论文]. 无锡: 江南大学, 2023.
[4]  庾泽华, 王亚伟, 王嘉文. 基于PID控制的交通边界控制方法[J]. 智能计算机与应用, 2024, 14(7): 231-235.
[5]  刘宁, 柴天佑. PID 控制器参数的优化整定方法[J]. 自动化学报, 2023, 49(11): 2272-2285.
[6]  Patki, V., Sonawane, D. and Ingole, D.D. (2013) Design and Implementation of Discrete Augmented Ziegler-Nichols PID Control. Proceedings of the Mobile Communication and Power Engineering: 2nd International Joint Conference, AIM/CCPE 2012, Bangalore, 27-28 April 2012, 262-268.
[7]  张梦杰, 陈姚节, 邓江. 改进TD3算法在电机PID控制器中的应用[J]. 计算机系统应用, 2024, 33(5): 262-270.
[8]  宋娟, 李萍. 基于免疫果蝇优化算法的PID控制参数优化[J]. 控制工程, 2017, 24(12): 2502-2507.
[9]  鲁博, 张寿明, 冯欣怡, 郭英英. 单神经元PID控制仿真与实现研究[J]. 工业仪表与自动化装置, 2024(1): 3-8.
[10]  赵广复, 李凯. 基于改进人工蜂群算法的高校自动排课问题的研究[J]. 长江信息通信, 2024, 37(7): 162-164+168.
[11]  李波, 宋婧媛, 张邦成. 改进人工蜂群算法及其在工程设计中的应用[J]. 吉林大学学报(信息科学版), 2023, 41(5): 810-819.
[12]  Xu, J., Han, Z., Yin, L., Yan, Z., Yu, Y. and Ma, G. (2024) Multi-Strategy-Based Artificial Bee Colony Algorithm for AUV Path Planning with Angle Constraints. Ocean Engineering, 312, Article ID: 119155.
https://doi.org/10.1016/j.oceaneng.2024.119155
[13]  Zhang, Z., Fu, Y., Gao, K., Pan, Q. and Huang, M. (2024) A Learning-Driven Multi-Objective Cooperative Artificial Bee Colony Algorithm for Distributed Flexible Job Shop Scheduling Problems with Preventive Maintenance and Transportation Operations. Computers & Industrial Engineering, 196, Article ID: 110484.
https://doi.org/10.1016/j.cie.2024.110484
[14]  曾雄飞. 基于粒子群算法优化BP神经网络的PID控制算法[J]. 电子设计工程, 2022, 30(11): 69-73+78.
[15]  Cheng, F., Fan, K., Miao, J., Li, B. and Wang, H. (2012) A BPNN-PID Based Long-Stroke Nanopositioning Control Scheme Driven by Ultrasonic Motor. Precision Engineering, 36, 485-493.
https://doi.org/10.1016/j.precisioneng.2012.03.001
[16]  Fan, J., Zhong, J., Zhao, J. and Zhu, Y. (2015) BP Neural Network Tuned PID Controller for Position Tracking of a Pneumatic Artificial Muscle. Technology and Health Care, 23, S231-S238.
https://doi.org/10.3233/thc-150958
[17]  Pan, L., et al. (2019) Variable Pitch Control Strategy of Wind Power Generation Based on BPNN-PID Algorithm. 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, 21-23 November 2019, 105-112.
https://doi.org/10.1109/ispec48194.2019.8974952
[18]  朱金磊, 袁晓兵, 裴俊. 基于改进人工蜂群算法的灾害场景下路径规划[J]. 中国科学院大学学报, 2023, 40(3): 397-405.
[19]  Elsisi, M., Soliman, M., Aboelela, M.A.S. and Mansour, W. (2015) ABC Based Design of PID Controller for Two Area Load Frequency Control with Nonlinearities. TELKOMNIKA Indonesian Journal of Electrical Engineering, 16, 58-64.
https://doi.org/10.11591/tijee.v16i1.1588
[20]  褚凯轩, 常天庆, 张雷. 基于改进人工蜂群算法的地面作战武器-目标分配[J]. 兵工学报, 2023, 44(7): 2171-2183.
[21]  Wang, J., Lei, D. and Tang, H. (2025) A Multi-Objective Dynamical Artificial Bee Colony for Energy-Efficient Fuzzy Hybrid Flow Shop Scheduling with Batch Processing Machines. Expert Systems with Applications, 259, Article ID: 125244.
https://doi.org/10.1016/j.eswa.2024.125244

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133