|
矿热炉电极端部位置的差动式磁场阵列检测系统
|
Abstract:
针对矿热炉电极端部位置检测精度低及开发过程中的复杂性问题,本文介绍了一种新型差动式磁场阵列检测系统。该系统通过布置磁场传感阵列,利用差动信号处理技术,有效消除了环境干扰和系统噪声,提高了电极端部位置检测的精度和可靠性。研究首先构建了矿热炉磁场检测模型,并基于毕奥–萨伐尔定律,分析了矿热炉的炉外磁场分布。仿真验证了差动式磁场阵列检测方法的有效性。测试结果表明,该系统能够在恶劣的工业环境中准确检测电极端部位置,为矿热炉的高效运行提供了有力支持。本研究为矿热炉的工业参数检测和控制提供了新的思路和技术支持。
In response to the low detection accuracy of the electrode tip position and the complexity in the development process for submerged arc furnaces, this paper introduces a novel differential magnetic field array detection system. The system, by deploying a magnetic sensor array and utilizing differential signal processing technology, effectively eliminates environmental interference and system noise, enhancing the accuracy and reliability of electrode tip position detection. The study initially constructs a magnetic field detection model for the submerged arc furnace and analyzes the external magnetic field distribution based on the Biot-Savart law. The effectiveness of the differential magnetic field array detection method is validated by simulations. Test results indicate that the system can accurately detect the electrode tip position in harsh industrial environments, providing strong support for the efficient operation of submerged arc furnaces. This research offers new ideas and technical support for the detection and control of industrial parameters in submerged arc furnaces.
[1] | 邓睿. 矿热炉电极调节系统设计与控制算法研究[D]: [硕士学位论文]. 长沙: 中南大学, 2024. |
[2] | Mulholland, A.C., Brereton-Stiles, P.J. and Hockaday, C.J. (2009) The Effectiveness of Current Control of Submerged Arc Furnace Electrode Penetration in Selected Scenarios. SIAMM-Journal of the South African Institute of Mining and Metallurgy, 109, 601-607. |
[3] | 康世民. 矿热炉电路分析与操作电阻的应用[J]. 铁合金, 2019, 50(1): 38-42. |
[4] | 森正浩. 锰铁电炉电极埋入深度推测方法[J]. 铁合金, 1995(2): 57-59. |
[5] | 吴俭民, 王庆贤, 徐志奇. 矿热炉电极工作长度监测系统的研究与实现[J]. 化工自动化及仪表, 2013, 41(2): 181-184. |
[6] | 唐春霞, 阳春华, 李沛. 硅锰铁合金埋弧炉三相电极位置建模研究[J]. 长沙民政职业技术学院学报, 2013, 20(3): 123-184. |
[7] | 赵锦程. 矿热炉内部场数值模拟与电极控制系统研究[D]: [硕士学位论文]. 沈阳: 沈阳理工大学, 2023. |
[8] | 白羽, 王琪, 孟凡荣. 矿热炉电极的非接触式在线检测系统[J]. 长春工业大学学院(自然科学版), 2012, 33(4): 383-386. |
[9] | 史凯凯. 矿热炉电极长度测量装置设计[D]: [硕士学位论文]. 西安: 西安石油大学, 2021. |
[10] | 刘卫玲. 矿热炉冶炼关键参数的电磁法检测机理研究及其产品化的实现[D]: [博士学位论文]. 太原: 太原理工大学, 2017. |
[11] | 周潼, 王莉, 牛群峰. 矿热炉电磁场仿真与电极位置检测方法研究[J]. 计算机仿真, 2020, 37(5): 206-212. |
[12] | Liu, W. and Chang, X. (2016) A Non-Contact Detection Method for Smelting in Submerged Arc Furnace Based on Magnetic Field Radiation. Journal of Magnetics, 21, 204-208. https://doi.org/10.4283/jmag.2016.21.2.204 |
[13] | Liu, W., Han, X., Yang, L. and Chang, X. (2016) Array Sensing Using Electromagnetic Method for Detection of Smelting in Submerged Arc Furnaces. Journal of Magnetics, 21, 322-329. https://doi.org/10.4283/jmag.2016.21.3.322 |
[14] | 肖谦衡. 矿热炉的炉内电路与操作电阻[J]. 铁合金, 1982(1): 11-17. |
[15] | 张南生. 硅铁炉内电热分布的概念[J]. 铁合金, 1986(6): 1-7. |
[16] | 赵凯华, 陈熙谋. 电磁学(上) [M]. 第2版. 北京: 高等教育出版社, 2010: 352-354. |
[17] | 王子坤, 李拓文, 李宝宽. 矿热炉内镍铁还原过程电流密度分布与温度场的有限元分析[J]. 材料与冶金学报, 2013, 12(3): 177-217. |