全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于IPSO优化的MPC轨迹跟踪控制研究
Research on MPC Trajectory Tracking Control Based on IPSO Optimization

DOI: 10.12677/mos.2025.143224, PP. 306-316

Keywords: 轨迹跟踪,模型预测控制,粒子群优化算法,机械臂
Trajectory Tracking
, Model Predictive Control, Particle Swarm Optimization, Manipulator

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对机械臂轨迹跟踪过程中因外界干扰和固定控制器参数难以应对动态环境变化而导致的跟踪精度不足问题,本文提出了一种基于改进粒子群算法的机械臂自适应模型预测轨迹跟踪控制策略。通过机械臂动力学方程建立系统模型,并设计用于轨迹跟踪的模型预测控制器,引入粒子群优化算法对控制器中的权重系数进行在线调整。采用线性惯性权重下降策略,克服了传统粒子群算法易陷入局部最优的问题,同时提高了收敛速度。仿真实验结果表明,所提出的改进粒子群优化模型预测控制器具有更稳定、精准的跟踪性能,相较于原版控制器和传统粒子群优化控制器,关节角均方误差分别降低了33.85%和23.08%。
To address the issue of insufficient tracking accuracy in robotic arm trajectory tracking due to external disturbances and the inability of fixed controller parameters to adapt to dynamic environments, this paper proposes an adaptive model predictive trajectory tracking control strategy based on an improved particle swarm optimization (PSO) algorithm. The system model is established using the dynamic equations of the robotic arm, and a model predictive controller (MPC) is designed for trajectory tracking. The PSO algorithm is introduced to adjust the weight coefficients of the controller online. A linear inertia weight decay strategy is employed to mitigate the problem of traditional PSO algorithms easily falling into local optima, while also improving convergence speed. Simulation experiments demonstrate that the proposed improved PSO-based MPC achieves more stable and accurate tracking performance, with the mean squared error of joint angles reduced by 33.85% and 23.08% compared to the original controller and the traditional PSO-improved controller, respectively.

References

[1]  Hewing, L., Wabersich, K.P., Menner, M. and Zeilinger, M.N. (2020) Learning-Based Model Predictive Control: Toward Safe Learning in Control. Annual Review of Control, Robotics, and Autonomous Systems, 3, 269-296.
https://doi.org/10.1146/annurev-control-090419-075625
[2]  Yan, J., Jin, L., Yuan, Z. and Liu, Z. (2022) RNN for Receding Horizon Control of Redundant Robot Manipulators. IEEE Transactions on Industrial Electronics, 69, 1608-1619.
https://doi.org/10.1109/tie.2021.3062257
[3]  Zhu, T., Mao, J., Han, L., Zhang, C. and Yang, J. (2024) Real-Time Dynamic Obstacle Avoidance for Robot Manipulators Based on Cascaded Nonlinear MPC with Artificial Potential Field. IEEE Transactions on Industrial Electronics, 71, 7424-7434.
https://doi.org/10.1109/tie.2023.3306405
[4]  Tang, Q., Chu, Z., Qiang, Y., Wu, S. and Zhou, Z. (2020) Trajectory Tracking of Robotic Manipulators with Constraints Based on Model Predictive Control. 2020 17th International Conference on Ubiquitous Robots (UR), Kyoto, 22-26 June 2020, 23-28.
https://doi.org/10.1109/ur49135.2020.9144943
[5]  Marini, F. and Walczak, B. (2015) Particle Swarm Optimization (PSO). A Tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153-165.
https://doi.org/10.1016/j.chemolab.2015.08.020
[6]  周燕, 刘培玉, 赵静, 王乾龙. 基于自适应惯性权重的混沌粒子群算法[J]. 山东大学学报(理学版), 2012, 47(3): 27-32.
[7]  段书用, 李昌洛, 韩旭, 刘桂荣. 机械臂动力学分析及关节非线性摩擦模型建立[J]. 机械工程学报, 2020, 56(9): 18-28.
[8]  刘帅, 许媛媛, 闫锋刚, 金铭. 泰勒展开与交替投影最大似然结合的离网格DOA估计算法[J]. 电子与信息学报, 2024, 46(8): 3219-3227.
[9]  Najafqolian, M.A., Alipour, K., Mousavifard, R. and Tarvirdizadeh, B. (2024) Control of Aerial Robots Using Convex QP LMPC and Learning-Based Explicit-MPC. IEEE Transactions on Industrial Informatics, 20, 10883-10891.
https://doi.org/10.1109/tii.2024.3397353
[10]  Liu, H., Fan, A., Li, Y., Bucknall, R. and Chen, L. (2024) Hierarchical Distributed MPC Method for Hybrid Energy Management: A Case Study of Ship with Variable Operating Conditions. Renewable and Sustainable Energy Reviews, 189, Article ID: 113894.
https://doi.org/10.1016/j.rser.2023.113894
[11]  Zhou, H., Huang, Y., Zhao, Y. and Lu, Y. (2024) Robopal: A Simulation Framework Based Mujoco.
https://github.com/NoneJou072/robopal

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133