全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微孔生物炭强化混合基质膜分离CO2性能
The CO2 Separation Performance of Mixed Matrix Membranes Enhanced by Microporous Biochar

DOI: 10.12677/se.2025.151001, PP. 1-8

Keywords: 微孔生物炭,Pebax 1657,混合基质膜,碳捕集
Microporous Biochar
, Pebax 1657, Mixed Matrix Membrane, Carbon Capture

Full-Text   Cite this paper   Add to My Lib

Abstract:

我国是农业大国,作为农业生产中的副产物,秸秆年产量巨大,提高秸秆的高值化利用将有利于农业生产的可持续发展。本研究以小麦秸秆为原材料制备了秸秆生物炭,使用小麦秸秆生物炭和Pebax 1657制备了混合基质膜,研究了该混合基质膜分离CO2的性能。研究表明,小麦秸秆生物炭具有高比表面积、丰富的微孔结构以及较为丰富的官能团。Pebax 1657中掺杂4 wt%小麦秸秆生物炭所制备的混合基质膜具有最佳的CO2分离性能,CO2分离渗透系数和选择性分别为106.5 Barrer和74.8,相比未掺杂前的纯Pebax 1657膜分别提升了34.0%和18.0%。
China is an agricultural country, and straw, as a by-product of agricultural production, has a substantial annual output. Enhancing the high-value utilization of straw will contribute to the sustainable development of agricultural production. In this study, wheat straw biochar was prepared from wheat straw, and a mixed matrix membrane was prepared with wheat straw biochar and Pebax 1657. The performance of mixed matrix membranes for separating CO2 was investigated. The results indicated that wheat straw biochar has high specific surface area, rich microporous structure, and abundant functional groups. The mixed matrix membrane prepared with 4 wt% wheat straw biochar doped in Pebax 1657 exhibited the best CO2 separation performance. The CO2 separation permeation coefficient and selectivity were 106.5 Barrer and 74.8, respectively, which were 34.0% and 18.0% higher than the pure Pebax 1657 membrane before doping, respectively.

References

[1]  王森培, 赵颖文, 许钰莎, 等. 中国小麦生产布局变迁及区域比较优势研究[J]. 中国食物与营养, 2025, 31(2): 20-26.
[2]  Tan, X., Zhu, S., Wang, R., Chen, Y., Show, P., Zhang, F., et al. (2021) Role of Biochar Surface Characteristics in the Adsorption of Aromatic Compounds: Pore Structure and Functional Groups. Chinese Chemical Letters, 32, 2939-2946.
https://doi.org/10.1016/j.cclet.2021.04.059
[3]  Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., et al. (2021) An Overview on Engineering the Surface Area and Porosity of Biochar. Science of the Total Environment, 763, Article ID: 144204.
https://doi.org/10.1016/j.scitotenv.2020.144204
[4]  Qi, G., Pan, Z., Zhang, X., Chang, S., Wang, H., Wang, M., et al. (2023) Microwave Biochar Produced with Activated Carbon Catalyst: Characterization and Adsorption of Heavy Metals. Environmental Research, 216, Article ID: 114732.
https://doi.org/10.1016/j.envres.2022.114732
[5]  Cao, L., Zhang, X., Xu, Y., Xiang, W., Wang, R., Ding, F., et al. (2022) Straw and Wood Based Biochar for CO2 Capture: Adsorption Performance and Governing Mechanisms. Separation and Purification Technology, 287, Article ID: 120592.
https://doi.org/10.1016/j.seppur.2022.120592
[6]  Qi, G., Pan, Z., Zhang, X., Miao, X., Xiang, W. and Gao, B. (2022) Effect of Ball Milling with Hydrogen Peroxide or Ammonia Hydroxide on Sorption Performance of Volatile Organic Compounds by Biochar from Different Pyrolysis Temperatures. Chemical Engineering Journal, 450, Article ID: 138027.
https://doi.org/10.1016/j.cej.2022.138027
[7]  Kamble, A.R., Patel, C.M. and Murthy, Z.V.P. (2021) A Review on the Recent Advances in Mixed Matrix Membranes for Gas Separation Processes. Renewable and Sustainable Energy Reviews, 145, Article ID: 111062.
https://doi.org/10.1016/j.rser.2021.111062
[8]  Meshkat, S., Kaliaguine, S. and Rodrigue, D. (2020) Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 Mixed Matrix Membranes for CO2 Separation. Separation and Purification Technology, 235, Article ID: 116150.
https://doi.org/10.1016/j.seppur.2019.116150
[9]  Ebadi, R., Maghsoudi, H. and Babaluo, A.A. (2021) Fabrication and Characterization of Pebax-1657 Mixed Matrix Membrane Loaded with Si-CHA Zeolite for CO2 Separation from CH4. Journal of Natural Gas Science and Engineering, 90, Article ID: 103947.
https://doi.org/10.1016/j.jngse.2021.103947
[10]  Shi, F., Sun, J., Wang, J., Liu, M., Yan, Z., Zhu, B., et al. (2021) MXene versus Graphene Oxide: Investigation on the Effects of 2D Nanosheets in Mixed Matrix Membranes for CO2 Separation. Journal of Membrane Science, 620, Article ID: 118850.
https://doi.org/10.1016/j.memsci.2020.118850
[11]  Pazani, F. and Aroujalian, A. (2020) Enhanced CO2-Selective Behavior of Pebax-1657: A Comparative Study between the Influence of Graphene-Based Fillers. Polymer Testing, 81, Article ID: 106264.
https://doi.org/10.1016/j.polymertesting.2019.106264
[12]  Sarmadi, R., Salimi, M. and Pirouzfar, V. (2020) The Assessment of Honeycomb Structure UiO-66 and Amino Functionalized UiO-66 Metal-Organic Frameworks to Modify the Morphology and Performance of Pebax®1657-Based Gas Separation Membranes for CO2 Capture Applications. Environmental Science and Pollution Research, 27, 40618-40632.
https://doi.org/10.1007/s11356-020-09927-2
[13]  Vasileiou, A.N., Theodorakopoulos, G.V., Karousos, D.S., Bouroushian, M., Sapalidis, A.A. and Favvas, E.P. (2023) Nanocarbon-Based Mixed Matrix Pebax-1657 Flat Sheet Membranes for CO2/CH4 Separation. Membranes, 13, Article No. 470.
https://doi.org/10.3390/membranes13050470
[14]  Ajebe, E.G., Hu, C., Wang, C., Hung, W., Tsai, H., Hundessa, N.K., et al. (2024) Synergistic Effect of Combining UiO-66 Nanoparticles and MXene Nanosheets in Pebax Mixed-Matrix Membranes for CO2 Capture. Materials Today Sustainability, 26, Article ID: 100818.
https://doi.org/10.1016/j.mtsust.2024.100818
[15]  Wang, H., Yang, X., Dai, Y., Yu, M., Zheng, W., Ruan, X., et al. (2024) Multi-Functionalized MCNs Effectively Improve the Interfacial Compatibility of Mixed Matrix Membranes and Enhance CO2 Separation Performance. Separation and Purification Technology, 333, Article ID: 125923.
https://doi.org/10.1016/j.seppur.2023.125923
[16]  Habib, N., Shamair, Z., Tara, N., Nizami, A., Akhtar, F.H., Ahmad, N.M., et al. (2020) Development of Highly Permeable and Selective Mixed Matrix Membranes Based on Pebax®1657 and NOTT-300 for CO2 Capture. Separation and Purification Technology, 234, Article ID: 116101.
https://doi.org/10.1016/j.seppur.2019.116101
[17]  Cheng, Y., Ying, Y., Japip, S., Jiang, S., Chung, T., Zhang, S., et al. (2018) Advanced Porous Materials in Mixed Matrix Membranes. Advanced Materials, 30, Article ID: 1802401.
https://doi.org/10.1002/adma.201802401
[18]  Wang, H., Zheng, W., Yang, X., Ning, M., Li, X., Xi, Y., et al. (2021) Pebax-Based Mixed Matrix Membranes Derived from Microporous Carbon Nanospheres for Permeable and Selective CO2 Separation. Separation and Purification Technology, 274, Article ID: 119015.
https://doi.org/10.1016/j.seppur.2021.119015
[19]  Li, P., Ma, W., Zhong, J., Pan, Y., Ren, X., Guo, M., et al. (2024) Improving the CO2 Permeability and Selectivity of Pebax Mixed-Matrix Membranes by Constructing an “Expressway” Using Pyrazine-Based Nitrogen-Doped Porous Carbon with Nitrogen-Containing Groups and Meso-Microporous Structure. Journal of Environmental Chemical Engineering, 12, Article ID: 113144.
https://doi.org/10.1016/j.jece.2024.113144
[20]  Gao, Y., Qiao, Z., Zhao, S., Wang, Z. and Wang, J. (2018) In Situ Synthesis of Polymer Grafted ZIFs and Application in Mixed Matrix Membrane for CO2 Separation. Journal of Materials Chemistry A, 6, 3151-3161.
https://doi.org/10.1039/c7ta10322k
[21]  游新秀, 曹苓玉, 徐浩亮, 等. 不同类型生物炭对CO2吸附性能及其机理[J]. 材料科学与工程学报, 2024, 42(2): 269-275+283.
[22]  宋朝霞, 刘永康, 郭耀坤, 等. 小麦秸秆生物炭对孔雀石绿吸附性能的研究[J]. 无机盐工业, 2024, 56(9): 128-135.
[23]  Shin, J.E., Lee, S.K., Cho, Y.H. and Park, H.B. (2019) Effect of PEG-MEA and Graphene Oxide Additives on the Performance of Pebax®1657 Mixed Matrix Membranes for CO2 Separation. Journal of Membrane Science, 572, 300-308.
https://doi.org/10.1016/j.memsci.2018.11.025
[24]  李伟, 李英教, 林常, 等. 改性磁性生物炭对亚甲基蓝吸附性能的研究[J]. 化学工业与工程, 2024, 41(6): 110-119.
[25]  宁梦佳, 代岩, 郗元, 等. Cu(Qc)2强化Pebax混合基质膜分离CO2 [J]. 化工进展, 2021, 40(10): 5652-5659.
[26]  Meshkat, S., Kaliaguine, S. and Rodrigue, D. (2018) Mixed Matrix Membranes Based on Amine and Non-Amine MIL-53(Al) in Pebax® MH-1657 for CO2 Separation. Separation and Purification Technology, 200, 177-190.
https://doi.org/10.1016/j.seppur.2018.02.038
[27]  Mosleh, S., Khanbabaei, G., Mozdianfard, M. and Hemmati, M. (2016) Application of Poly(amide-B-Ethylene Oxide)/Zeolitic Imidazolate Framework Nanocomposite Membrane in Gas Separation. Iranian Polymer Journal, 25, 977-990.
https://doi.org/10.1007/s13726-016-0484-y
[28]  Song, C., Li, R., Fan, Z., Liu, Q., Zhang, B. and Kitamura, Y. (2020) CO2/N2 Separation Performance of Pebax/MIL-101 and Pebax/NH2-MIL-101 Mixed Matrix Membranes and Intensification via Sub-Ambient Operation. Separation and Purification Technology, 238, Article ID: 116500.
https://doi.org/10.1016/j.seppur.2020.116500
[29]  王乐乐, 赵丹, 陈淑慧, 等. MIL-101-OH纳米流体混基质膜的制备及其CO2分离性能[J]. 膜科学与技术, 2024, 44(4): 36-47.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133