全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

度普利尤单抗在慢性阻塞性肺疾病治疗中的研究进展
Research Progress of Dupilumab in the Treatment of Chronic Obstructive Pulmonary Disease

DOI: 10.12677/acm.2025.153840, PP. 2082-2090

Keywords: 度普利尤单抗,生物制剂,慢性阻塞性肺疾病,治疗,不良反应
Dupilumab
, Biological Agents, Chronic Obstructive Pulmonary Disease, Treatment, Adverse Reactions

Full-Text   Cite this paper   Add to My Lib

Abstract:

慢性阻塞性肺疾病是一种常见的慢性呼吸系统疾病,以慢性呼吸道症状及持续性气流受限为特征,常表现为反复咳嗽、咳痰、进行性加重的呼吸困难等症状。慢阻肺为目前全球前三大死亡原因之一,许多患者长年遭受疾病的折磨,造成重大并逐年攀升的经济和社会负担。2024年9月27日,度普利尤单抗被中国国家药品监督管理局(NMPA)批准,用于血嗜酸性粒细胞升高且控制不佳的慢性阻塞性肺疾病成人患者。目前关于度普利尤单抗用于治疗慢阻肺的研究报道较少,对于度普利尤单抗的安全性认识不足。本文针对度普利尤单抗在慢性阻塞性肺疾病治疗中的机制及安全性进行综述,以期为临床提供治疗参考及慢阻肺治疗开发提供新的途径。
Chronic obstructive pulmonary disease is a common chronic respiratory disease characterized by chronic respiratory symptoms and persistent airflow limitation, often manifested as recurrent coughing, sputum production, progressively worsening dyspnea and other symptoms. Chronic obstructive pulmonary disease (COPD) is currently one of the top three causes of death worldwide, and many patients suffer from the disease for years, causing significant and increasing economic and social burdens. On September 27, 2024, dupilumab was approved by the National Medical Products Administration (NMPA) of China for use in adult patients with chronic obstructive pulmonary disease who have elevated blood eosinophils and poor control. At present, there are few research reports on the use of dupilumab for the treatment of chronic obstructive pulmonary disease, and there is insufficient understanding of the safety of dupilumab. This article reviews the mechanism and safety of dupilumab in the treatment of chronic obstructive pulmonary disease, aiming to provide clinical references and new approaches for the development of COPD treatment.

References

[1]  Celli, B., Fabbri, L., Criner, G., Martinez, F.J., Mannino, D., Vogelmeier, C., et al. (2022) Definition and Nomenclature of Chronic Obstructive Pulmonary Disease: Time for Its Revision. American Journal of Respiratory and Critical Care Medicine, 206, 1317-1325.
https://doi.org/10.1164/rccm.202204-0671pp
[2]  GOLD (2023) Global Strategy for Prevention, Diagnosis and Management of COPD: 2024 Report.
[3]  Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., et al. (2012) Global and Regional Mortality from 235 Causes of Death for 20 Age Groups in 1990 and 2010: A Systematic Analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 2095-2128.
https://doi.org/10.1016/s0140-6736(12)61728-0
[4]  Vos, T., Flaxman, A.D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., et al. (2012) Years Lived with Disability (YLDs) for 1160 Sequelae of 289 Diseases and Injuries 1990-2010: A Systematic Analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 2163-2196.
https://doi.org/10.1016/s0140-6736(12)61729-2
[5]  Adeloye, D., Chua, S., Lee, C., Basquill, C., Papana, A., Theodoratou, E., et al. (2015) Global and Regional Estimates of COPD Prevalence: Systematic Review and Meta-Analysis. Journal of Global Health, 5, Article ID: 020415.
https://doi.org/10.7189/jogh.05.020415
[6]  Adeloye, D., Song, P., Zhu, Y., Campbell, H., Sheikh, A. and Rudan, I. (2022) Global, Regional, and National Prevalence of, and Risk Factors for, Chronic Obstructive Pulmonary Disease (COPD) in 2019: A Systematic Review and Modelling Analysis. The Lancet Respiratory Medicine, 10, 447-458.
https://doi.org/10.1016/s2213-2600(21)00511-7
[7]  GBD 2013 Mortality and Causes of Death Collaborators (2015) Global, Regional, and National Age-Sex Specific All-Cause and Cause-Specific Mortality for 240 Causes of Death, 1990-2013: A Systematic Analysis for the Global Burden of Disease Study 2013. The Lancet (London, England), 385, 117-171.
https://doi.org/10.1016/S0140-6736(14)61682-2
[8]  Xia, J., Zhao, J., Shang, J., Li, M., Zeng, Z., Zhao, J., et al. (2015) Increased IL-33 Expression in Chronic Obstructive Pulmonary Disease. American Journal of Physiology-Lung Cellular and Molecular Physiology, 308, L619-L627.
https://doi.org/10.1152/ajplung.00305.2014
[9]  Barnes, P.J. (2016) Inflammatory Mechanisms in Patients with Chronic Obstructive Pulmonary Disease. Journal of Allergy and Clinical Immunology, 138, 16-27.
https://doi.org/10.1016/j.jaci.2016.05.011
[10]  GOLD (2024) Global Strategy for Prevention, Diagnosis and Management of COPD: 2025 Report.
[11]  Gandhi, N.A., Pirozzi, G. and Graham, N.M.H. (2017) Commonality of the IL-4/IL-13 Pathway in Atopic Diseases. Expert Review of Clinical Immunology, 13, 425-437.
https://doi.org/10.1080/1744666x.2017.1298443
[12]  Hogg, J.C., Chu, F., Utokaparch, S., Woods, R., Elliott, W.M., Buzatu, L., et al. (2004) The Nature of Small-Airway Obstruction in Chronic Obstructive Pulmonary Disease. New England Journal of Medicine, 350, 2645-2653.
https://doi.org/10.1056/nejmoa032158
[13]  Li, A., Chan, H.P., Gan, P.X.L., Liew, M.F., Wong, W.S.F. and Lim, H. (2021) Eosinophilic Endotype of Chronic Obstructive Pulmonary Disease: Similarities and Differences from Asthma. The Korean Journal of Internal Medicine, 36, 1305-1319.
https://doi.org/10.3904/kjim.2021.180
[14]  Singh, D., Kolsum, U., Brightling, C.E., Locantore, N., Agusti, A. and Tal-Singer, R. (2014) Eosinophilic Inflammation in COPD: Prevalence and Clinical Characteristics. European Respiratory Journal, 44, 1697-1700.
https://doi.org/10.1183/09031936.00162414
[15]  Bafadhel, M., McKenna, S., Terry, S., Mistry, V., Reid, C., Haldar, P., et al. (2011) Acute Exacerbations of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 184, 662-671.
https://doi.org/10.1164/rccm.201104-0597oc
[16]  Fieldes, M., Bourguignon, C., Assou, S., Nasri, A., Fort, A., Vachier, I., et al. (2021) Targeted Therapy in Eosinophilic Chronic Obstructive Pulmonary Disease. ERJ Open Research, 7, 00437-02020.
https://doi.org/10.1183/23120541.00437-2020
[17]  Hastie, A.T., Martinez, F.J., Curtis, J.L., et al. (2017) Association of Sputum and Blood Eosinophil Concentrations with Clinical Measures of COPD Severity: An Analysis of the SPIROMICS Cohort. The Lancet Respiratory Medicine, 5, 956-967.
[18]  Kerkhof, M., Sonnappa, S., Postma, D.S., Brusselle, G., Agustí, A., Anzueto, A., et al. (2017) Blood Eosinophil Count and Exacerbation Risk in Patients with COPD. European Respiratory Journal, 50, Article ID: 1700761.
https://doi.org/10.1183/13993003.00761-2017
[19]  Vedel-Krogh, S., Nielsen, S.F., Lange, P., Vestbo, J. and Nordestgaard, B.G. (2016) Blood Eosinophils and Exacerbations in Chronic Obstructive Pulmonary Disease. The Copenhagen General Population Study. American Journal of Respiratory and Critical Care Medicine, 193, 965-974.
https://doi.org/10.1164/rccm.201509-1869oc
[20]  Pavord, I.D., Lettis, S., Anzueto, A. and Barnes, N. (2016) Blood Eosinophil Count and Pneumonia Risk in Patients with Chronic Obstructive Pulmonary Disease: A Patient-Level Meta-Analysis. The Lancet Respiratory Medicine, 4, 731-741.
https://doi.org/10.1016/s2213-2600(16)30148-5
[21]  Vedel-Krogh, S., Nordestgaard, B.G., Lange, P., Vestbo, J. and Nielsen, S.F. (2018) Blood Eosinophil Count and Risk of Pneumonia Hospitalisations in Individuals with COPD. European Respiratory Journal, 51, Article ID: 1800120.
https://doi.org/10.1183/13993003.00120-2018
[22]  Pavord, I.D., Chanez, P., Criner, G.J., Kerstjens, H.A.M., Korn, S., Lugogo, N., et al. (2017) Mepolizumab for Eosinophilic Chronic Obstructive Pulmonary Disease. New England Journal of Medicine, 377, 1613-1629.
https://doi.org/10.1056/nejmoa1708208
[23]  GSK (2024) GSK Announces Positive Results from Phase III Trial of Nucala (Mepolizumab) in COPD.
[24]  Freeman, C.M., Curtis, J.L. and Hastie, A.T. (2023) Finding the Right Biological: Eosinophil Subset Differences in Asthma and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 208, 121-123.
https://doi.org/10.1164/rccm.202305-0811ed
[25]  Kay, A.B. (2001) Allergy and Allergic Diseases. New England Journal of Medicine, 344, 30-37.
https://doi.org/10.1056/nejm200101043440106
[26]  Palm, N.W., Rosenstein, R.K. and Medzhitov, R. (2012) Allergic Host Defences. Nature, 484, 465-472.
https://doi.org/10.1038/nature11047
[27]  Smirnov, D.V., Smirnova, M.G., Korobko, V.G. and Frolova, E.I. (1995) Tandem Arrangement of Human Genes for Interleukin-4 and Interleukin-13: Resemblance in Their Organization. Gene, 155, 277-281.
https://doi.org/10.1016/0378-1119(94)00720-d
[28]  Chomarat, P. and Banchereau, J. (1998) Interleukin-4 and Lnterleukin-13: Their Similarities and Discrepancies. International Reviews of Immunology, 17, 1-52.
https://doi.org/10.3109/08830189809084486
[29]  McCormick, S.M. and Heller, N.M. (2015) Commentary: IL-4 and IL-13 Receptors and Signaling. Cytokine, 75, 38-50.
https://doi.org/10.1016/j.cyto.2015.05.023
[30]  Walter, M.R., Cook, W.J., Zhao, B.G., Cameron, R.P., Ealick, S.E., Walter, R.L., et al. (1992) Crystal Structure of Recombinant Human Interleukin-4. Journal of Biological Chemistry, 267, 20371-20376.
https://doi.org/10.1016/s0021-9258(19)88711-2
[31]  Hershey, G.K.K. (2003) IL-13 Receptors and Signaling Pathways: An Evolving Web. Journal of Allergy and Clinical Immunology, 111, 677-690.
https://doi.org/10.1067/mai.2003.1333
[32]  Eisenmesser, E.Z., Horita, D.A., Altieri, A.S. and Byrd, R.A. (2001) Solution Structure of Interleukin-13 and Insights into Receptor Engagement. Journal of Molecular Biology, 310, 231-241.
https://doi.org/10.1006/jmbi.2001.4765
[33]  Mueller, T.D., Zhang, J., Sebald, W. and Duschl, A. (2002) Structure, Binding, and Antagonists in the IL-4/IL-13 Receptor System. Biochimica et Biophysica Acta (BBA)Molecular Cell Research, 1592, 237-250.
https://doi.org/10.1016/s0167-4889(02)00318-x
[34]  Gadani, S.P., Cronk, J.C., Norris, G.T. and Kipnis, J. (2012) IL-4 in the Brain: A Cytokine to Remember. The Journal of Immunology, 189, 4213-4219.
https://doi.org/10.4049/jimmunol.1202246
[35]  Junttila, I.S. (2018) Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Frontiers in Immunology, 9, Article 888.
https://doi.org/10.3389/fimmu.2018.00888
[36]  Wills-Karp, M. and Finkelman, F.D. (2008) Untangling the Complex Web of IL-4-and Il-13-Mediated Signaling Pathways. Science Signaling, 1, pe55.
https://doi.org/10.1126/scisignal.1.51.pe55
[37]  Chang, H.Y. and Nadeau, K.C. (2017) IL-4Rα Inhibitor for Atopic Disease. Cell, 170, 222.
https://doi.org/10.1016/j.cell.2017.06.046
[38]  Chen, F., Wang, Y., Chen, X., Yang, N. and Li, L. (2023) Targeting Interleukin 4 and Interleukin 13: A Novel Therapeutic Approach in Bullous Pemphigoid. Annals of Medicine, 55, 1156-1170.
https://doi.org/10.1080/07853890.2023.2188487
[39]  Sun, X.J., Wang, L., Zhang, Y., Yenush, L., Myers Jr, M.G., Glasheen, E., et al. (1995) Role of IRS-2 in Insulin and Cytokine Signalling. Nature, 377, 173-177.
https://doi.org/10.1038/377173a0
[40]  Heller, N.M., Qi, X., Gesbert, F. and Keegan, A.D. (2012) The Extracellular and Transmembrane Domains of the γC and Interleukin (IL)-13 Receptor α1 Chains, Not Their Cytoplasmic Domains, Dictate the Nature of Signaling Responses to IL-4 and IL-13. Journal of Biological Chemistry, 287, 31948-31961.
https://doi.org/10.1074/jbc.m112.348896
[41]  Obiri, N.I., Debinski, W., Leonard, W.J. and Puri, R.K. (1995) Receptor for Interleukin 13: Interaction with Interleukin 4 by a Mechanism that Does Not Involve the Common γ Chain Shared by Receptors for Interleukins 2, 4, 7, 9, and 15. Journal of Biological Chemistry, 270, 8797-8804.
https://doi.org/10.1074/jbc.270.15.8797
[42]  Kapp, U., Yeh, W.-C, Patterson, B., Elia, A.J., Kägi, D., Ho, A., et al. (1999) Interleukin 13 Is Secreted by and Stimulates the Growth of Hodgkin and Reed-Sternberg Cells. The Journal of Experimental Medicine, 189, 1939-1946.
https://doi.org/10.1084/jem.189.12.1939
[43]  Zheng, T., Zhu, Z., Wang, Z., Homer, R.J., Ma, B., Riese, R.J., et al. (2000) Inducible Targeting of IL-13 to the Adult Lung Causes Matrix Metalloproteinase-and Cathepsin-Dependent Emphysema. Journal of Clinical Investigation, 106, 1081-1093.
https://doi.org/10.1172/jci10458
[44]  Rabe, K.F., Rennard, S., Martinez, F.J., Celli, B.R., Singh, D., Papi, A., et al. (2023) Targeting Type 2 Inflammation and Epithelial Alarmins in Chronic Obstructive Pulmonary Disease: A Biologics Outlook. American Journal of Respiratory and Critical Care Medicine, 208, 395-405.
https://doi.org/10.1164/rccm.202303-0455ci
[45]  Cooper, P.R., Poll, C.T., Barnes, P.J. and Sturton, R.G. (2010) Involvement of IL-13 in Tobacco Smoke-Induced Changes in the Structure and Function of Rat Intrapulmonary Airways. American Journal of Respiratory Cell and Molecular Biology, 43, 220-226.
https://doi.org/10.1165/rcmb.2009-0117oc
[46]  Kolsum, U., Damera, G., Pham, T., Southworth, T., Mason, S., Karur, P., et al. (2017) Pulmonary Inflammation in Patients with Chronic Obstructive Pulmonary Disease with Higher Blood Eosinophil Counts. Journal of Allergy and Clinical Immunology, 140, 1181-1184.E7.
https://doi.org/10.1016/j.jaci.2017.04.027
[47]  Simpson, E.L., Bieber, T., Guttman-Yassky, E., Beck, L.A., Blauvelt, A., Cork, M.J., et al. (2016) Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. New England Journal of Medicine, 375, 2335-2348.
https://doi.org/10.1056/nejmoa1610020
[48]  Beck, L.A., Thaçi, D., Hamilton, J.D., Graham, N.M., Bieber, T., Rocklin, R., et al. (2014) Dupilumab Treatment in Adults with Moderate-to-Severe Atopic Dermatitis. New England Journal of Medicine, 371, 130-139.
https://doi.org/10.1056/nejmoa1314768
[49]  Thaçi, D., Simpson, E.L., Beck, L.A., Bieber, T., Blauvelt, A., Papp, K., et al. (2016) Efficacy and Safety of Dupilumab in Adults with Moderate-to-Severe Atopic Dermatitis Inadequately Controlled by Topical Treatments: A Randomised, Placebo-Controlled, Dose-Ranging Phase 2b Trial. The Lancet, 387, 40-52.
https://doi.org/10.1016/s0140-6736(15)00388-8
[50]  Kuo, A.M., Gu, S., Stoll, J., Moy, A.P., Dusza, S.W., Gordon, A., et al. (2023) Management of Immune-Related Cutaneous Adverse Events with Dupilumab. Journal for ImmunoTherapy of Cancer, 11, e007324.
https://doi.org/10.1136/jitc-2023-007324
[51]  Beck, L.A., Deleuran, M., Bissonnette, R., de Bruin-Weller, M., Galus, R., Nakahara, T., et al. (2022) Dupilumab Provides Acceptable Safety and Sustained Efficacy for up to 4 Years in an Open-Label Study of Adults with Moderate-to-Severe Atopic Dermatitis. American Journal of Clinical Dermatology, 23, 393-408.
https://doi.org/10.1007/s40257-022-00685-0
[52]  Wenzel, S., Ford, L., Pearlman, D., Spector, S., Sher, L., Skobieranda, F., et al. (2013) Dupilumab in Persistent Asthma with Elevated Eosinophil Levels. New England Journal of Medicine, 368, 2455-2466.
https://doi.org/10.1056/nejmoa1304048
[53]  Bridgewood, C., Wittmann, M., Macleod, T., Watad, A., Newton, D., Bhan, K., et al. (2022) T Helper 2 IL-4/IL-13 Dual Blockade with Dupilumab Is Linked to Some Emergent T Helper 17-Type Diseases, Including Seronegative Arthritis and Enthesitis/Enthesopathy, but Not to Humoral Autoimmune Diseases. Journal of Investigative Dermatology, 142, 2660-2667.
https://doi.org/10.1016/j.jid.2022.03.013
[54]  Olaguibel, J., Sastre, J., Rodríguez, J. and del Pozo, V. (2022) Eosinophilia Induced by Blocking the IL-4/IL-13 Pathway: Potential Mechanisms and Clinical Outcomes. Journal of Investigational Allergy and Clinical Immunology, 32, 165-180.
https://doi.org/10.18176/jiaci.0823
[55]  Li, Y., Deng, Z., Wen, J., Ou, C., Cen, X., Liao, Y., et al. (2024) Efficacy of Dupilumab and Risk Factors for Dupilumab-Induced Hypereosinophilia in Severe Asthma: A Preliminary Study from China. Annals of Medicine, 56, Article 2311843.
https://doi.org/10.1080/07853890.2024.2311843
[56]  Li, S.H., Nehme, K.F., Moshkovich, A., et al. (2024) Eosinophilia and Adverse Effects of Dupilumab for Respiratory Indications: A Real-World Setting. The Journal of Allergy and Clinical Immunology: In Practice, 13, 121-131.
https://doi.org/10.1016/j.jaip.2024.09.013
[57]  Yamazaki, K., Nomizo, T., Hatanaka, K., Hayama, N., Oguma, T. and Asano, K. (2022) Eosinophilic Granulomatosis with Polyangiitis after Treatment with Dupilumab. Journal of Allergy and Clinical Immunology: Global, 1, 180-182.
https://doi.org/10.1016/j.jacig.2022.03.006
[58]  Menzella, F., Montanari, G., Patricelli, G., Cavazza, A., Galeone, C., Ruggiero, P., et al. (2019) A Case of Chronic Eosinophilic Pneumonia in a Patient Treated with Dupilumab. Therapeutics and Clinical Risk Management, 15, 869-875.
https://doi.org/10.2147/tcrm.s207402
[59]  De Groot, A.E., Myers, K.V., Krueger, T.E.G., Brennen, W.N., Amend, S.R. and Pienta, K.J. (2022) Targeting Interleukin 4 Receptor Alpha on Tumor-Associated Macrophages Reduces the Pro-Tumor Macrophage Phenotype. Neoplasia, 32, Article ID: 100830.
https://doi.org/10.1016/j.neo.2022.100830
[60]  Jaén, M., Martín-Regalado, Á., Bartolomé, R.A., Robles, J. and Casal, J.I. (2022) Interleukin 13 Receptor Alpha 2 (IL13Rα2): Expression, Signaling Pathways and Therapeutic Applications in Cancer. Biochimica et Biophysica Acta (BBA)Reviews on Cancer, 1877, Article ID: 188802.
https://doi.org/10.1016/j.bbcan.2022.188802
[61]  LaMarche, N.M., Hegde, S., Park, M.D., Maier, B.B., Troncoso, L., Le Berichel, J., et al. (2023) An IL-4 Signalling Axis in Bone Marrow Drives Pro-Tumorigenic Myelopoiesis. Nature, 625, 166-174.
https://doi.org/10.1038/s41586-023-06797-9
[62]  Macagno, N., Mastorino, L., Siliquini, N., Santaniello, U., Gelato, F., Cavaliere, G., et al. (2024) Safety of Dupilumab in Patients with Cancer. Journal of the European Academy of Dermatology and Venereology, 38, e764-e766.
https://doi.org/10.1111/jdv.19873
[63]  Owji, S., Ungar, B., Dubin, D.P., Poplausky, D., Young, J.N., Ghalili, S., et al. (2023) No Association between Dupilumab Use and Short-Term Cancer Development in Atopic Dermatitis Patients. The Journal of Allergy and Clinical Immunology: In Practice, 11, 1548-1551.
https://doi.org/10.1016/j.jaip.2022.12.018
[64]  Hamp, A., Hanson, J., Schwartz, R.A., Lambert, W.C. and Alhatem, A. (2023) Dupilumab-Associated Mycosis Fungoides: A Cross-Sectional Study. Archives of Dermatological Research, 315, 2561-2569.
https://doi.org/10.1007/s00403-023-02652-z
[65]  Hasan, I., Parsons, L., Duran, S. and Zinn, Z. (2024) Dupilumab Therapy for Atopic Dermatitis Is Associated with Increased Risk of Cutaneous T Cell Lymphoma: A Retrospective Cohort Study. Journal of the American Academy of Dermatology, 91, 255-258.
https://doi.org/10.1016/j.jaad.2024.03.039
[66]  Eichenfield, L.F., Bieber, T., Beck, L.A., Simpson, E.L., Thaçi, D., de Bruin-Weller, M., et al. (2019) Infections in Dupilumab Clinical Trials in Atopic Dermatitis: A Comprehensive Pooled Analysis. American Journal of Clinical Dermatology, 20, 443-456.
https://doi.org/10.1007/s40257-019-00445-7
[67]  Blauvelt, A., Simpson, E.L., Tyring, S.K., Purcell, L.A., Shumel, B., Petro, C.D., et al. (2019) Dupilumab Does Not Affect Correlates of Vaccine-Induced Immunity: A Randomized, Placebo-Controlled Trial in Adults with Moderate-to-Severe Atopic Dermatitis. Journal of the American Academy of Dermatology, 80, 158-167.E1.
https://doi.org/10.1016/j.jaad.2018.07.048
[68]  Braddock, M., Hanania, N.A., Sharafkhaneh, A., Colice, G. and Carlsson, M. (2018) Potential Risks Related to Modulating Interleukin-13 and Interleukin-4 Signalling: A Systematic Review. Drug Safety, 41, 489-509.
https://doi.org/10.1007/s40264-017-0636-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133