|
人工智能在急性缺血性脑卒中经血管内血栓切除术的预后预测研究中的应用进展
|
Abstract:
急性缺血性脑卒中(AIS)是一种严重影响人类健康相关的疾病,其拥有高发病率和高死亡率,并与吸烟、高脂饮食等不良生活习惯相关,人工智能(AI)比如机器学习(ML)和深度学习(DL),可以实现从临床及辅助检查尤其是成像学检查中提取特征数据,经过算法处理,得出可信结果。近几年AI更多地应用于医院系统的工作中,并成为临床工作及科研项目有力的帮手。本文全面综述了AI预测急性缺血性脑卒中(AIS)患者在经过血管内治疗,尤其是经过血栓切除术治疗后的预后情况,从而实现精准有效的临床管理和护理决策。此外,本文还批判性地评估了现有研究的局限性,并且指出了新的研究方向,最终目标是提高AIS患者的生存率。
Acute ischemic stroke (AIS) is a serious human health-related disease that is characterized by elevated morbidity and mortality rates. It is often linked to detrimental lifestyle behaviors, including smoking and high-fat dietary intake. The advent of artificial intelligence (AI), encompassing machine learning (ML) and deep learning (DL) methodologies, facilitates the extraction and analysis of feature data derived from clinical and ancillary assessments, particularly imaging studies. These data are processed through sophisticated algorithms to yield reliable outcomes. In recent years, AI has been increasingly integrated into hospital systems, emerging as a formidable tool in both clinical practice and research initiatives. This paper presents a comprehensive analysis of AI applications in predicting the prognosis of acute ischemic stroke (AIS) patients following endovascular interventions, with a particular focus on thrombectomy procedures. The objective is to enhance the accuracy and efficacy of clinical management and care decision-making processes. Furthermore, the study critically examines the limitations inherent in current research and identifies prospective avenues for future investigation, ultimately aiming to improve the survival outcomes of AIS patients.
[1] | Tuo, Y.Y., Li, Y., Li, Y., Ma, J.J., Yang, X.Y., Wu, S.S., et al. (2024) Global, Regional, and National Burden of Thalassemia, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. eClinicalMedicine, 72, Article ID: 102619. https://doi.org/10.1016/j.eclinm.2024.102619 |
[2] | Wang, Y.-J., Li, Z.-X., Gu, H.-Q., Zhai, Y., Zhou, Q., Jiang, Y., et al. (2022) China Stroke Statistics: An Update on the 2019 Report from the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations. Stroke and Vascular Neurology, 7, 415-450. https://doi.org/10.1136/svn-2021-001374 |
[3] | Hankey, G.J. (2017) Stroke. The Lancet, 389, 641-654. https://doi.org/10.1016/s0140-6736(16)30962-x |
[4] | Singer, O.C., Berkefeld, J., Nolte, C.H., Bohner, G., Reich, A., Wiesmann, M., et al. (2015) Collateral Vessels in Proximal Middle Cerebral Artery Occlusion: The ENDOSTROKE Study. Radiology, 274, 851-858. https://doi.org/10.1148/radiol.14140951 |
[5] | Bang, O.Y., Saver, J.L., Buck, B.H., Alger, J.R., Starkman, S., Ovbiagele, B., et al. (2007) Impact of Collateral Flow on Tissue Fate in Acute Ischaemic Stroke. Journal of Neurology, Neurosurgery & Psychiatry, 79, 625-629. https://doi.org/10.1136/jnnp.2007.132100 |
[6] | Powers, W.J., Rabinstein, A.A., Ackerson, T., et al. (2018) Guidelines for the Early Management of Patients with Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 49, e46-e110. https://doi.org/10.1161/STR.0000000000000163 |
[7] | Saver, J.L., Goyal, M., Bonafe, A., Diener, H., Levy, E.I., Pereira, V.M., et al. (2015) Stent-Retriever Thrombectomy after Intravenous t-PA vs. t-PA Alone in Stroke. New England Journal of Medicine, 372, 2285-2295. https://doi.org/10.1056/nejmoa1415061 |
[8] | Tomsick, T.A., Yeatts, S.D., Liebeskind, D.S., Carrozzella, J., Foster, L., Goyal, M., et al. (2014) Endovascular Revascularization Results in IMS III: Intracranial ICA and M1 Occlusions. Journal of NeuroInterventional Surgery, 7, 795-802. https://doi.org/10.1136/neurintsurg-2014-011318 |
[9] | Goyal, M., Demchuk, A.M., Menon, B.K., Eesa, M., Rempel, J.L., Thornton, J., et al. (2015) Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke. New England Journal of Medicine, 372, 1019-1030. https://doi.org/10.1056/nejmoa1414905 |
[10] | Campbell, B.C.V., Mitchell, P.J., Kleinig, T.J., Dewey, H.M., Churilov, L., Yassi, N., et al. (2015) Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection. New England Journal of Medicine, 372, 1009-1018. https://doi.org/10.1056/nejmoa1414792 |
[11] | Asadi, H., Dowling, R., Yan, B. and Mitchell, P. (2014) Machine Learning for Outcome Prediction of Acute Ischemic Stroke Post Intra-Arterial Therapy. PLOS ONE, 9, e88225. https://doi.org/10.1371/journal.pone.0088225 |
[12] | Monteiro, M., Fonseca, A.C., Freitas, A.T., Pinho e Melo, T., Francisco, A.P., Ferro, J.M., et al. (2018) Using Machine Learning to Improve the Prediction of Functional Outcome in Ischemic Stroke Patients. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15, 1953-1959. https://doi.org/10.1109/tcbb.2018.2811471 |
[13] | Heo, J., Yoon, J.G., Park, H., Kim, Y.D., Nam, H.S. and Heo, J.H. (2019) Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke. Stroke, 50, 1263-1265. https://doi.org/10.1161/strokeaha.118.024293 |
[14] | Bacchi, S., Zerner, T., Oakden-Rayner, L., Kleinig, T., Patel, S. and Jannes, J. (2020) Deep Learning in the Prediction of Ischaemic Stroke Thrombolysis Functional Outcomes. Academic Radiology, 27, e19-e23. https://doi.org/10.1016/j.acra.2019.03.015 |
[15] | Begoli, E., Bhattacharya, T. and Kusnezov, D. (2019) The Need for Uncertainty Quantification in Machine-Assisted Medical Decision Making. Nature Machine Intelligence, 1, 20-23. https://doi.org/10.1038/s42256-018-0004-1 |
[16] | Kim, D., Choi, K., Kim, J., Hong, J., Choi, S., Park, M., et al. (2023) Deep Learning-Based Personalised Outcome Prediction after Acute Ischaemic Stroke. Journal of Neurology, Neurosurgery & Psychiatry, 94, 369-378. https://doi.org/10.1136/jnnp-2022-330230 |
[17] | Alaka, S.A., Menon, B.K., Brobbey, A., Williamson, T., Goyal, M., Demchuk, A.M., et al. (2020) Functional Outcome Prediction in Ischemic Stroke: A Comparison of Machine Learning Algorithms and Regression Models. Frontiers in Neurology, 11, Article 889. https://doi.org/10.3389/fneur.2020.00889 |
[18] | Calderaro, J., Seraphin, T.P., Luedde, T. and Simon, T.G. (2022) Artificial Intelligence for the Prevention and Clinical Management of Hepatocellular Carcinoma. Journal of Hepatology, 76, 1348-1361. https://doi.org/10.1016/j.jhep.2022.01.014 |
[19] | Panni, P., Gory, B., Xie, Y., Consoli, A., Desilles, J., Mazighi, M., et al. (2019) Acute Stroke with Large Ischemic Core Treated by Thrombectomy. Stroke, 50, 1164-1171. https://doi.org/10.1161/strokeaha.118.024295 |
[20] | Vora, N.A., Shook, S.J., Schumacher, H.C., Tievsky, A.L., Albers, G.W., Wechsler, L.R., et al. (2011) A 5-Item Scale to Predict Stroke Outcome after Cortical Middle Cerebral Artery Territory Infarction. Stroke, 42, 645-649. https://doi.org/10.1161/strokeaha.110.596312 |
[21] | Liu, Z.Y., Wang, S., Dong, D., Wei, J.W., Fang, C., Zhou, X.Z., et al. (2019) The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics, 9, 1303-1322. https://doi.org/10.7150/thno.30309 |
[22] | Choy, G., Khalilzadeh, O., Michalski, M., Do, S., Samir, A.E., Pianykh, O.S., et al. (2018) Current Applications and Future Impact of Machine Learning in Radiology. Radiology, 288, 318-328. https://doi.org/10.1148/radiol.2018171820 |
[23] | Czap, A.L. and Sheth, S.A. (2021) Overview of Imaging Modalities in Stroke. Neurology, 97, S42-S51. https://doi.org/10.1212/wnl.0000000000012794 |
[24] | Moons, K.G.M., Royston, P., Vergouwe, Y., Grobbee, D.E. and Altman, D.G. (2009) Prognosis and Prognostic Research: What, Why, and How? BMJ, 338, b375. https://doi.org/10.1136/bmj.b375 |
[25] | Doheim, M.F., Hagrass, A.I., Elrefaey, M., Al-Bayati, A.R., Bhatt, N.R., Lang, M., et al. (2023) From Therapeutic Nihilism to Armamentarium: A Meta-Analysis of Randomized Clinical Trials Assessing Safety and Efficacy of Endovascular Therapy for Acute Large Ischemic Strokes. Interventional Neuroradiology, Article ID: 15910199231170681. |
[26] | Goyal, M., Menon, B.K., van Zwam, W.H., Dippel, D.W.J., Mitchell, P.J., Demchuk, A.M., et al. (2016) Endovascular Thrombectomy after Large-Vessel Ischaemic Stroke: A Meta-Analysis of Individual Patient Data from Five Randomised Trials. The Lancet, 387, 1723-1731. https://doi.org/10.1016/s0140-6736(16)00163-x |
[27] | van Os, H.J.A., Ramos, L.A., Hilbert, A., van Leeuwen, M., van Walderveen, M.A.A., Kruyt, N.D., et al. (2018) Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms. Frontiers in Neurology, 9, Article 784. https://doi.org/10.3389/fneur.2018.00784 |
[28] | Venema, E., Mulder, M.J.H.L., Roozenbeek, B., Broderick, J.P., Yeatts, S.D., Khatri, P., et al. (2017) Selection of Patients for Intra-Arterial Treatment for Acute Ischaemic Stroke: Development and Validation of a Clinical Decision Tool in Two Randomised Trials. BMJ, 357, j1710. https://doi.org/10.1136/bmj.j1710 |
[29] | Sommer, J., Dierksen, F., Zeevi, T., Tran, A.T., Avery, E.W., Mak, A., et al. (2024) Deep Learning for Prediction of Post-Thrombectomy Outcomes Based on Admission CT Angiography in Large Vessel Occlusion Stroke. Frontiers in Artificial Intelligence, 7, Article 1369702. https://doi.org/10.3389/frai.2024.1369702 |
[30] | Martín Vicario, C., Rodríguez Salas, D., Maier, A., Hock, S., Kuramatsu, J., Kallmuenzer, B., et al. (2024) Uncertainty-aware Deep Learning for Trustworthy Prediction of Long-Term Outcome after Endovascular Thrombectomy. Scientific Reports, 14, Article No. 5544. https://doi.org/10.1038/s41598-024-55761-8 |
[31] | Brugnara, G., Neuberger, U., Mahmutoglu, M.A., Foltyn, M., Herweh, C., Nagel, S., et al. (2020) Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning. Stroke, 51, 3541-3551. https://doi.org/10.1161/strokeaha.120.030287 |
[32] | Hamann, J., Herzog, L., Wehrli, C., Dobrocky, T., Bink, A., Piccirelli, M., et al. (2020) Machine‐Learning‐Based Outcome Prediction in Stroke Patients with Middle Cerebral Artery‐M1 Occlusions and Early Thrombectomy. European Journal of Neurology, 28, 1234-1243. https://doi.org/10.1111/ene.14651 |
[33] | Winder, A., Wilms, M., Fiehler, J. and Forkert, N.D. (2021) Treatment Efficacy Analysis in Acute Ischemic Stroke Patients Using in Silico Modeling Based on Machine Learning: A Proof-of-Principle. Biomedicines, 9, Article 1357. https://doi.org/10.3390/biomedicines9101357 |
[34] | Petrović, I., Broggi, S., Killer-Oberpfalzer, M., Pfaff, J.A.R., Griessenauer, C.J., Milosavljević, I., et al. (2024) Predictors of In-Hospital Mortality after Thrombectomy in Anterior Circulation Large Vessel Occlusion: A Retrospective, Machine Learning Study. Diagnostics, 14, Article 1531. https://doi.org/10.3390/diagnostics14141531 |
[35] | Yang, T.T., Hu, Y.X., Pan, X.D., Lou, S., Zou, J.J., Deng, Q.W., et al. (2023) Interpretable Machine Learning Model Predicting Early Neurological Deterioration in Ischemic Stroke Patients Treated with Mechanical Thrombectomy: A Retrospective Study. Brain Sciences, 13, Article 557. https://doi.org/10.3390/brainsci13040557 |
[36] | Liu, J.F., Tao, W.D., Wang, Z., Chen, X., Wu, B. and Liu, M. (2021) Radiomics-Based Prediction of Hemorrhage Expansion among Patients with Thrombolysis/thrombectomy Related-Hemorrhagic Transformation Using Machine Learning. Therapeutic Advances in Neurological Disorders, 14, 1-12. |
[37] | Hilbert, A., Ramos, L.A., van Os, H.J.A., Olabarriaga, S.D., Tolhuisen, M.L., Wermer, M.J.H., et al. (2019) Data-Efficient Deep Learning of Radiological Image Data for Outcome Prediction after Endovascular Treatment of Patients with Acute Ischemic Stroke. Computers in Biology and Medicine, 115, Article ID: 103516. https://doi.org/10.1016/j.compbiomed.2019.103516 |
[38] | Zhang, H.Y., Polson, J., Nael, K., Salamon, N., Yoo, B., Speier, W., et al. (2021) A Machine Learning Approach to Predict Acute Ischemic Stroke Thrombectomy Reperfusion Using Discriminative MR Image Features. 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), Athens, 27-30 July 2021, 1-4. https://doi.org/10.1109/bhi50953.2021.9508597 |
[39] | Liggins, J.T.P., Yoo, A.J., Mishra, N.K., Wheeler, H.M., Straka, M., Leslie-Mazwi, T.M., et al. (2013) A Score Based on Age and DWI Volume Predicts Poor Outcome Following Endovascular Treatment for Acute Ischemic Stroke. International Journal of Stroke, 10, 705-709. https://doi.org/10.1111/ijs.12207 |
[40] | Li, Y., Liu, Y.C., Hong, Z., Wang, Y. and Lu, X.L. (2022) Combining Machine Learning with Radiomics Features in Predicting Outcomes after Mechanical Thrombectomy in Patients with Acute Ischemic Stroke. Computer Methods and Programs in Biomedicine, 225, Article ID: 107093. https://doi.org/10.1016/j.cmpb.2022.107093 |
[41] | Oura, D., Takamiya, S., Ihara, R., Niiya, Y. and Sugimori, H. (2023) Predicting Mechanical Thrombectomy Outcome and Time Limit through ADC Value Analysis: A Comprehensive Clinical and Simulation Study Using Machine Learning. Diagnostics, 13, Article 2138. https://doi.org/10.3390/diagnostics13132138 |
[42] | Heo, J., Yoon, Y., Han, H.J., Kim, J., Park, K.Y., Kim, B.M., et al. (2023) Prediction of Cerebral Hemorrhagic Transformation after Thrombectomy Using a Deep Learning of Dual-Energy CT. European Radiology, 34, 3840-3848. https://doi.org/10.1007/s00330-023-10432-6 |
[43] | Zhang, J., Yang, Y., Sun, H., et al. (2014) Hemorrhagic Transformation after Cerebral Infarction: Current Concepts and Challenges. Annals of Translational Medicine, 2, Article 81. |
[44] | Jadhav, A.P., Molyneaux, B.J., Hill, M.D. and Jovin, T.G. (2018) Care of the Post-Thrombectomy Patient. Stroke, 49, 2801-2807. https://doi.org/10.1161/strokeaha.118.021640 |
[45] | Khatri, R., McKinney, A.M., Swenson, B. and Janardhan, V. (2012) Blood-Brain Barrier, Reperfusion Injury, and Hemorrhagic Transformation in Acute Ischemic Stroke. Neurology, 79, S52-S57. https://doi.org/10.1212/wnl.0b013e3182697e70 |
[46] | Yu, W., Xia, C., Tao, B., Xiao, Y., Gao, Z.Y., Zhu, F., et al. (2023) CT Hyperdense Lesions after Endovascular Therapy in Acute Ischemic Stroke: Imaging Findings and Clinical Significance. Cerebrovascular Diseases, 53, 607-617. https://doi.org/10.1159/000535369 |
[47] | Heo, J., Sim, Y., Kim, B.M., Kim, D.J., Kim, Y.D., Nam, H.S., et al. (2024) Radiomics Using Non-Contrast CT to Predict Hemorrhagic Transformation Risk in Stroke Patients Undergoing Revascularization. European Radiology, 34, 6005-6015. https://doi.org/10.1007/s00330-024-10618-6 |
[48] | Zeng, W.X., Li, W., Huang, K.B., Lin, Z.Z., Dai, H., He, Z.L., et al. (2022) Predicting Futile Recanalization, Malignant Cerebral Edema, and Cerebral Herniation Using Intelligible Ensemble Machine Learning Following Mechanical Thrombectomy for Acute Ischemic Stroke. Frontiers in Neurology, 13, Article 982783. https://doi.org/10.3389/fneur.2022.982783 |
[49] | Xu, H.F., Jia, B.X., Huo, X.C., Mo, D.P., Ma, N., Gao, F., et al. (2020) Predictors of Futile Recanalization after Endovascular Treatment in Patients with Acute Ischemic Stroke in a Multicenter Registry Study. Journal of Stroke and Cerebrovascular Diseases, 29, Article ID: 105067. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105067 |
[50] | Da Ros, V., Cavallo, A., Di Donna, C., D’Onofrio, A., Trulli, M., Di Candia, S., et al. (2024) Ensemble Machine Learning to Predict Futile Recanalization after Mechanical Thrombectomy Based on Non-Contrast CT Imaging. Journal of Stroke and Cerebrovascular Diseases, 33, Article ID: 107890. https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.107890 |