The aim of this study is to establish a link between the traditional use of Sidarhombifolia and its scientific effectiveness by comparing the anti-inflammatory and antioxidant potentials of the aqueous and ethanolic extracts from the stem barks, leaves, and roots of the plant harvested in the central region of Cameroon. Following qualitative and quantitative phytochemical screening, the acute oral toxicity of the extracts was determined using the toxicity class method outlined in the Organization for Economic Co-operation and Development (OECD) guidelines. In vitro and in vivo anti-inflammatory potentials, along with antioxidant effects, were determined through bovine albumin denaturation assays, measuring edema volume induced by 1% carrageenan in rats’ paws using a plethysmometer, and assessing anti-hemolytic and anti-lipoperoxidative activities. The results showed that EER (ethanolic extract of the roots) is the richest in secondary metabolites and that at doses of 2000 and 5000 mg/kg of body weight, no signs of toxicity were noted in rats. Of the anti-inflammatory activity, protein denaturation revealed a maximum percentage of inhibition of 84.18% ± 0.19% at the dose of 10 mg/ml of EEF (ethanolic extract of the leaves), and at the sixth hour, the greatest percentages of inhibition of edema were 95.31% for EER and 95.56% for EET (ethanolic extract of the stem barks) at respective doses of 200 and 400 mg/kg of body weight. Concerning the antioxidant activity, at the dose of 10 mg/ml, the anti-hemolytic and anti-lipoperoxidative activities showed a respective inhibition percentage of 63.08% for EAT (antioxidant extract of the stem barks) and 47.97% for EAR (antioxidant root extract). Based on the research findings, it can be concluded that Sidarhombifolia extracts are non-toxic at the tested doses, showcasing significant anti-inflammatory and antioxidant properties. The stem of Sidarhombifolia shows great promise as a medicinal treatment for inflammation.
References
[1]
Brink, M. and Achigan-Dako, E.G. (2012) Ressources végétales de l’Afrique tropicale 16. Plantes à fibres.
[2]
Netea, M.G., Balkwill, F., Chonchol, M., Cominelli, F., Donath, M.Y., Giamarellos-Bourboulis, E.J., et al. (2017) A Guiding Map for Inflammation. Nature Immunology, 18, 826-831. https://doi.org/10.1038/ni.3790
[3]
Médecins Sans Frontières (2019) Médicaments essentiels.
[4]
OMS (2011) Liste modèle de l’OMS des médicaments essentiels 17e liste (Révision mars 2011).
[5]
Medscap (2017) Toxicité des anti-inflammatoires non stéroïdiens (AINS). Medscap.
[6]
Cooney, N., Pollack, C. and Butkerait, P. (2015) Adverse Drug Reactions and Drug-Drug Interactions with Over-the-Counter NSAIDs. Therapeutics and Clinical Risk Management, 11, 1061-1075. https://doi.org/10.2147/tcrm.s79135
[7]
Edoga, H.O. and Okwu, D.E. (2005) Constituants phytochimiques de certaines plantes médicinales nigérianes. African Journal of Biotechnology, 4, 685-688.
[8]
Parekh, J.C.S. (2008) Criblage phytochimique de certaines plantes de la région occidentale de l’Inde. Arches végétalisées, 8, 657-662.
[9]
Mah, S.H., Teh, S.S. and Ee, G.C.L. (2017) Anti-Inflammatory, Anti-Cholinergic and Cytotoxic Effects of Sidarhombifolia. Pharmaceutical Biology, 55, 920-928. https://doi.org/10.1080/13880209.2017.1285322
Ngoup, T., Efeze, N.D., Kanaa, T., Mbang, J.P.E., Segovia, C., Nga, N., et al. (2024) Physical, Chemical and Mechanical Characterization of Sidarhombifolia Fibers from the Center Region of Cameroon for Their Potential Use in Textiles and Composites. Journal of Natural Fibers, 21, Article ID: 2294478. https://doi.org/10.1080/15440478.2023.2294478
[12]
Tanumihadja, M., Mattulada, I.K., Natsir, N., Subehan, S., Mandey, F. and Muslimin, L. (2019) Structural Assessment of Chemical Constituent of Sidaguri (Sidarhombifolia Linn) and Its Ability to Inhibit Cyclooxygenase. Pesquisa Brasileira em Odontopediatria e Clínica Integrada, 19, 1-7. https://doi.org/10.4034/pboci.2019.191.96
[13]
Chaves, O., Gomes, R., Tomaz, A., Fernandes, M., Das Graças Mendes Junior, L., De Fátima Agra, M., et al. (2013) Secondary Metabolites from Sidarhombifolia L. (Malvaceae) and the Vasorelaxant Activity of Cryptolepinone. Molecules, 18, 2769-2777. https://doi.org/10.3390/molecules18032769
[14]
Ferro, D.M., Mazzutti, S., Vitali, L., Oliveira Müller, C.M. and Ferreira, S.R.S. (2019) Integrated Extraction Approach to Increase the Recovery of Antioxidant Compounds from Sidarhombifolia Leaves. The Journal of Supercritical Fluids, 149, 10-19. https://doi.org/10.1016/j.supflu.2019.03.013
[15]
Lenny, S., Barus, T. and Sitopu, E.Y. (2010) Isolasi Senyawa Alkaloid Dari Daun Sidaguri (Sidarhombifolia L.). Jurnal Kimia Mulawarman, 8, 40-43.
[16]
Prakash, A., Varma, R. and Ghosal, S. (1981) Alkaloid Constituents of Sida acuta, S. humilis, S. rhombifolia and S. spinosa. Planta Medica, 43, 384-388. https://doi.org/10.1055/s-2007-971529
[17]
Aminah, N.S., Laili, E.R., Rafi, M., Rochman, A., Insanu, M. and Tun, K.N.W. (2021) Secondary Metabolite Compounds from Sida Genus and Their Bioactivity. Heliyon, 7, e06682. https://doi.org/10.1016/j.heliyon.2021.e06682
[18]
Kamdoum, B.C., Simo, I., Wouamba, S.C.N., Tchatat Tali, B.M., Ngameni, B., Fotso, G.W., et al. (2022) Chemical Constituents of Two Cameroonian Medicinal Plants: Sida rhombifolia L. and Sida acuta Burm. f. (Malvaceae) and Their Antiplasmodial Activity. Natural Product Research, 36, 5311-5318. https://doi.org/10.1080/14786419.2021.1937156
[19]
Dhalwal, K., Deshpande, Y.S. and Purohit, A.P. (2007) Evaluation of in Vitro Antioxidant Activity of Sidarhombifolia (L.) ssp. Retusa (L.). Journal of Medicinal Food, 10, 683-688. https://doi.org/10.1089/jmf.2006.129
[20]
Arciniegas, A., Pérez-Castorena, A.L., Reyes, S., Contreras, J.L. and De Vivar, A.R. (2003) New Oplopane and Eremophilane Derivatives from Robinsoneciogerberifolius. Journal of Natural Products, 66, 225-229. https://doi.org/10.1021/np0203739
[21]
Laili, E.R., Aminah, N.S., Kristanti, A.N., Wardana, A.P., Rafi, M., Rohman, A., et al. (2022) Comparative Study of Sidarhombifolia from Two Different Locations. Rasayan Journal of Chemistry, 15, 642-650. https://doi.org/10.31788/rjc.2022.1516588
[22]
Assam, J.P.A., Dzoyem, J., Pieme, C. and Penlap, V. (2010) In Vitro Antibacterial Activity and Acute Toxicity Studies of Aqueous-Methanol Extract of Sidarhombifolia Linn. (Malvaceae). BMC Complementary and Alternative Medicine, 10, Article No. 40. https://doi.org/10.1186/1472-6882-10-40
[23]
Narendhirakannan, R.T. and Limmy, T.P. (2011) Anti-inflammatory and Anti-Oxidant Properties of Sidarhombifolia Stems and Roots in Adjuvant Induced Arthritic Rats. Immunopharmacology and Immunotoxicology, 34, 326-336. https://doi.org/10.3109/08923973.2011.605142
[24]
Foumane Maniepi, J., Soppo Lobe, V., Nga, N., Metogo Ntsama, J., Mbenga Mekoulou, F., Ngolsou, F., Diboué, B.P., Obono, P., Ndongo, M.N. and Ze Minkande, J. (2022) Analyse phytochimique des extraits aqueux de Sida acuta et Triumfetta cordifolia, deux plantes utilisées pour faciliter l’accouchement en médecine traditionnelle au Cameroun. Health Sciences and Disease, 23, 14-18.
[25]
Brinckmann, J.A. (2013) Emerging Importance of Geographical Indications and Designations of Origin-Authenticating Geo-Authentic Botanicals and Implications for Phytotherapy. Phytotherapy Research, 27, 1581-1587. https://doi.org/10.1002/ptr.4912
[26]
Alemán-Laporte, J., Bandini, L.A., Garcia-Gomes, M.S., Zanatto, D.A., Fantoni, D.T., Amador Pereira, M.A., et al. (2019) Combination of Ketamine and Xylazine with Opioids and Acepromazine in Rats: Physiological Changes and Their Analgesic Effect Analysed by Ultrasonic Vocalization. Laboratory Animals, 54, 171-182. https://doi.org/10.1177/0023677219850211
[27]
Aguwa, U.S., Eze, C.E., Obinwa, B.N., Okeke, S.N., Onwuelingo, S.F., Okonkwo, D.I., et al. (2020) Comparing the Effect of Methods of Rat Euthanasia on the Brain of Wistar Rats: Cervical Dislocation, Chloroform Inhalation, Diethyl Ether Inhalation and Formalin Inhalation. Journal of Advances in Medicine and Medical Research, 32, 8-16. https://doi.org/10.9734/jammr/2020/v32i1730636
[28]
Adedapo, A.A., Jimoh, F.O., Koduru, S., Afolayan, A.J. and Masika, P.J. (2008) Antibacterial and Antioxidant Properties of the Methanol Extracts of the Leaves and Stems of Calpurnia aurea. BMC Complementary and Alternative Medicine, 8, Article No. 53. https://doi.org/10.1186/1472-6882-8-53
[29]
Lakache, Z., Tigrine, C., Aliboudhar, H. and Kameli, A. (2019) Composition chimique, activités anti-inflammatoire, antalgique et cytotoxique in vivo de l’extrait méthanolique des feuilles d’Olea europaea. Phytothérapie, 19, 83-92. https://doi.org/10.3166/phyto-2019-0195
[30]
Harborne, J.B. (1998) Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. 3rd Edition, Chapman & Hall, 58.
[31]
Odoh, U., Ezugwu, C. and Okoro, E. (2012) Quantitative Phytochemical, Proximate/Nutritive Composition Analysis of β Vulgaris Linnaeus (Chenopodiceae). Planta Medica, 78, PI116. https://doi.org/10.1055/s-0032-1320803
[32]
OCDE (2009) Lignes Directrices de L‘OCDE Pour Les Essais. 1-13.
[33]
Bancroft, J.D., Suvarna, K. and Layton, C. (2019) Bancroft’s Theory and Practice of Histological Techniques. Elsevier, 557.
[34]
Djikem, T.R.N., et al. (2022) Activités analgésiques et anti-inflammatoires du tengho: Une boisson à base de quelques épices du Cameroun. Biology and Medicine, 14, 1-6.
[35]
Gunathilake, K.D.P.P., Ranaweera, K.K.D.S. and Rupasinghe, H.P.V. (2018) In Vitro Anti-Inflammatory Properties of Selected Green Leafy Vegetables. Biomedicines, 6, Article 107. https://doi.org/10.3390/biomedicines6040107
[36]
Diatta, W., Sy, G., Manga, C., Diatta, K., Fall, A. and Bassene, E. (2014) Recherche des activités anti-inflammatoire et analgésique des extraits de feuilles de Zanthoxylum zanthoxyloides (Lam) zepernick et timler (Rutaceae). International Journal of Biological and Chemical Sciences, 8, 128-133. https://doi.org/10.4314/ijbcs.v8i1.12
[37]
Chandra, S., Chatterjee, P., Dey, P. and Bhattacharya, S. (2012) Evaluation of in Vitro Anti-Inflammatory Activity of Coffee against the Denaturation of Protein. Asian Pacific Journal of Tropical Biomedicine, 2, S178-S180. https://doi.org/10.1016/s2221-1691(12)60154-3
[38]
Lee, Y.Y., Saba, E., Irfan, M., Kim, M., Chan, J.Y., Jeon, B.S., et al. (2019) The Anti-Inflammatory and Anti-Nociceptive Effects of Korean Black Ginseng. Phytomedicine, 54, 169-181. https://doi.org/10.1016/j.phymed.2018.09.186
[39]
Epa, C., Elion Itou, R., Etou Ossibi, A., Attibayeba, O.P.R. and Abena, A.A. (2015) Effet anti-inflammatoire et cicatrisant des extraits aqueux et éthanolique des écorces du tronc de Buchholzia coriacea Engl. (Capparidaceae). Journal of Applied Biosciences, 94, 8858-8868. https://doi.org/10.4314/jab.v94i1.9
[40]
Loutfi, Y., Xavier, V.D., Stephanie, R.M. and Francelline, R.J. (2020) Évaluation de l’effet cicatrisant de Sida rhombifolia (malvaceae) sur les plaies cutanées chez la souris. Revue des Sciences, de Technologies et de l’Environnement, 2, 122-129.
[41]
Anthony, O.E. (2013) Preliminary Phytochemical Screening and Antidiarrheal Properties of Manniophyton Fulvum. IOSR Journal of Dental and Medical Sciences, 10, 46-52. https://doi.org/10.9790/0853-01024652
[42]
Koudoro, D.V., Wotto, R.C., Konfo, T.C.P., Agbangnan, D. and So-hounhloue, C.D. (2015) Phytochemical Screening, Antibacterial and Anti-Radical Activities of Danielliaoliveri Trunk Bark Extracts Used in Veterinary Medicine against Gastrointestinal Diseases in Benin. International Journal of Advanced Research, 3, 1190-1198.
[43]
Bekro, Y., Mamyrbekova, J., Boua, B., Tra Bi, F. and Ehile, E. (2008) Étude ethnobotanique et screening phytochimique de Caesalpinia benthamiana (Baill.) Herend. et Zarucchi (Caesalpiniaceae). Sciences & Nature, 4, 217-225. https://doi.org/10.4314/scinat.v4i2.42146
[44]
N’Guessan, K., Kadja, B., Zirihi, G., Traoré, D. and Aké-Assi, L. (2009) Screening phytochimique de quelques plantes médicinales ivoiriennes utilisées en pays Krobou (Agboville, Côte-d’Ivoire). Sciences & Nature, 6, 1-15. https://doi.org/10.4314/scinat.v6i1.48575
[45]
Tumanggor, L., Bintang, M. and Priosoeryanto, B.P. (2019) Assessing Cytotoxicity and Antiproliferation Effects of Sidarhombifolia against MCA-B1 and A549 Cancer Cells. Journal of Applied Biology and Biotechnology, 7, 63-68. https://doi.org/10.7324/JABB.2019.70610