To address global warming and its impact on the Sahel, particularly rising temperatures and changing precipitation patterns, this study explores Solar Radiation Management (SRM) through stratospheric aerosol injection (SAI). Using the IPSL-CM5A-LR model, we simulate the effects of SO2 injection on temperature and precipitation. We analyze data across three scenarios: historical greenhouse gas concentrations, RCP4.5 without SO2 injection, and RCP4.5 combined with SO2 geoengineering (G3). Climate data for two future periods (2020-2050 and 2050-2080) are compared to historical data (1950-2005) to assess seasonal and spatial variations in climate parameters. This study aims to evaluate the impact of SAI on temperature and precipitation in the Sahel, comparing historical data with RCP4.5 and SAI scenarios. It seeks to determine SAI’s effectiveness in mitigating warming and identify potential side effects on the region’s climate from 2020 to 2080. Results indicate that stratospheric SO2 injection in the Sahel moderates seasonal temperatures, sustaining reductions through 2050-2080. The injection stabilizes temperatures, especially in summer, potentially mitigating heat stress during the hot season. However, SAI exhibits varied impacts on precipitation patterns across seasons. While it enhances rainfall in June and July, it generally reduces precipitation intensity in May, June, and August. These effects underscore the complex interplay between SAI and regional climate dynamics. Overall, stratospheric SO2 injection emerges as a promising tool for climate mitigation in the Sahel, offering both opportunities and challenges that warrant further investigation as global efforts to address climate change intensify. Understanding these dynamics is crucial for informed decision-making regarding climate intervention strategies in vulnerable regions like the Sahel.
References
[1]
Adeniyi, M. O. (2016). The Consequences of the IPCC AR5 RCPs 4.5 and 8.5 Climate Change Scenarios on Precipitation in West Africa. ClimaticChange,139, 245-263. https://doi.org/10.1007/s10584-016-1774-2
[2]
Adeniyi, M. O., & Nweke, G. C. (2019). Performance of CMIP5 Models in Temperature Simulation over West Africa. Journal of the Nigerian Association of Mathematical Physics, 49, 147-158
[3]
Budyko, M. I. (1977). Present-Day Climatic Changes. Tellus, 29, 193-204.
[4]
Cong, R., & Brady, M. (2012). The Interdependence between Rainfall and Temperature: Copula Analyses. TheScientificWorldJournal,2012, Article ID: 405675. https://doi.org/10.1100/2012/405675
[5]
Crutzen, P. J. (2006). Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma? ClimaticChange,77, 211-220. https://doi.org/10.1007/s10584-006-9101-y
[6]
Curry, C. L., Sillmann, J., Bronaugh, D., Alterskjaer, K., Cole, J. N. S., Ji, D. et al. (2014). A Multimodel Examination of Climate Extremes in an Idealized Geoengineering Experiment. JournalofGeophysicalResearch:Atmospheres,119, 3900-3923. https://doi.org/10.1002/2013jd020648
[7]
Dagon, K., & Schrag, D. P. (2016). Exploring the Effects of Solar Radiation Management on Water Cycling in a Coupled Land-Atmosphere Model. Journal of Climate, 29, 2635-2650. https://doi.org/10.1175/jcli-d-15-0472.1
[8]
Dufresne, J., Foujols, M., Denvil, S., Caubel, A., Marti, O., Aumont, O. et al. (2013). Climate Change Projections Using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. ClimateDynamics,40, 2123-2165. https://doi.org/10.1007/s00382-012-1636-1
[9]
Effiong, U., & Neitzel, R. L. (2016). Assessing the Direct Occupational and Public Health Impacts of Solar Radiation Management with Stratospheric Aerosols. EnvironmentalHealth,15, Article No. 7. https://doi.org/10.1186/s12940-016-0089-0
[10]
Ezeife, N. D. (2014). Projected Impact of Global Warming on West Africa: Case for Regional and Transnational Adaptive Measures. Annual Survey of International & Comparative Law, 20, Article 9.
[11]
Fontaine, B., Roucou, P., & Monerie, P. (2011). Changes in the African Monsoon Region at Medium-Term Time Horizon Using 12 AR4 Coupled Models under the A1B Emissions Scenario. AtmosphericScienceLetters,12, 83-88. https://doi.org/10.1002/asl.321
[12]
Giannini, A., Salack, S., Lodoun, T., Ali, A., Gaye, A. T., & Ndiaye, O. (2013). A Unifying View of Climate Change in the Sahel Linking Intra-Seasonal, Interannual and Longer Time Scales. EnvironmentalResearchLetters,8, Article ID: 024010. https://doi.org/10.1088/1748-9326/8/2/024010
[13]
Govindasamy, B., & Caldeira, K. (2000). Geoengineering Earth’s Radiation Balance to Mitigate CO2‐Induced Climate Change. GeophysicalResearchLetters,27, 2141-2144. https://doi.org/10.1029/1999gl006086
[14]
Harding, A. R., Ricke, K., Heyen, D., MacMartin, D. G., & Moreno-Cruz, J. (2020). Climate Econometric Models Indicate Solar Geoengineering Would Reduce Inter-Country Income Inequality. NatureCommunications,11, Article No. 227. https://doi.org/10.1038/s41467-019-13957-x
[15]
Haywood, J. M., Jones, A., Bellouin, N., & Stephenson, D. (2013). Asymmetric Forcing from Stratospheric Aerosols Impacts Sahelian Rainfall. NatureClimateChange,3, 660-665. https://doi.org/10.1038/nclimate1857
[16]
Irvine, P., Emanuel, K., He, J., Horowitz, L. W., Vecchi, G., & Keith, D. (2019). Halving Warming with Idealized Solar Geoengineering Moderates Key Climate Hazards. NatureClimateChange,9, 295-299. https://doi.org/10.1038/s41558-019-0398-8
[17]
James, R., & Washington, R. (2013). Changes in African Temperature and Precipitation as-Sociated with Degrees of Global Warming. Climatic Change, 117, 859-872.
[18]
Keith, D. W., & Parker, A. (2013). The Fate of an Engineered Planet. ScientificAmerican,308, 34-36. https://doi.org/10.1038/scientificamerican0113-34
[19]
Kravitz, B., Robock, A., Boucher, O., Schmidt, H., Taylor, K. E., Stenchikov, G. et al. (2011). The Geoengineering Model Intercomparison Project (GeoMIP). AtmosphericScienceLetters,12, 162-167. https://doi.org/10.1002/asl.316
[20]
Krinner, G., Viovy, N., de Noblet‐Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P. et al. (2005). A Dynamic Global Vegetation Model for Studies of the Coupled Atmosphere‐biosphere System. GlobalBiogeochemicalCycles,19, GB1015. https://doi.org/10.1029/2003gb002199
[21]
Kuswanto, H., Kravitz, B., Miftahurrohmah, B., Fauzi, F., Sopahaluwaken, A., & Moore, J. (2021). Impact of Solar Geoengineering on Temperatures over the Indonesian Maritime Continent. InternationalJournalofClimatology,42, 2795-2814. https://doi.org/10.1002/joc.7391
[22]
Monerie, P., Fontaine, B., & Roucou, P. (2013). Expected Future Changes in the African Monsoon between 2030 and 2070 Using Some CMIP3 and CMIP5 Models under a Medium-Low RCP Scenario. Journal of Geophysical Research: Atmospheres, 117, D16111. https://doi.org/10.1029/2012jd017510
[23]
Mukherjee, S., Aadhar, S., Stone, D., & Mishra, V. (2018). Increase in Extreme Precipitation Events under Anthropogenic Warming in India. WeatherandClimateExtremes,20, 45-53. https://doi.org/10.1016/j.wace.2018.03.005
[24]
Niang, I., Ruppel, O. C., Abdrabo, M. A., Essel, A., Lennard, C., Padgham, J., & Urquhart, P. (2014). Africa. In Climate Change. Impacts, Adaptation, and Vulnerability. Part: Regional Aspects.ContributionofWorkingGroupIItotheFifthAssessmentReportoftheInter-GovernmentalPanelonClimate Change (pp. 1199-1265). Cambridge University Press.
[25]
Niemeier, U., & Timmreck, C. (2015). What Is the Limit of Climate Engineering by Stratospheric Injection of SO2? AtmosphericChemistryandPhysics,15, 9129-9141. https://doi.org/10.5194/acp-15-9129-2015
[26]
Pongratz, J., Lobell, D. B., Cao, L., & Caldeira, K. (2012). Crop Yields in a Geoengineered Climate. NatureClimateChange,2, 101-105. https://doi.org/10.1038/nclimate1373
[27]
Proctor, J., Hsiang, S., Burney, J., Burke, M., & Schlenker, W. (2018). Estimating Global Agricultural Effects of Geoengineering Using Volcanic Eruptions. Nature,560, 480-483. https://doi.org/10.1038/s41586-018-0417-3
[28]
Robock, A., Oman, L., & Stenchikov, G. L. (2008). Regional Climate Responses to Geoengineering with Tropical and Arctic SO2 Injections. JournalofGeophysicalResearch:Atmospheres,113, D16101. https://doi.org/10.1029/2008jd010050
[29]
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An Overview of CMIP5 and the Experiment Design. BulletinoftheAmericanMeteorologicalSociety,93, 485-498. https://doi.org/10.1175/bams-d-11-00094.1
[30]
Tilmes, S., Fasullo, J., Lamarque, J., Marsh, D. R., Mills, M., Alterskjær, K. et al. (2013). The Hydrological Impact of Geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). JournalofGeophysicalResearch:Atmospheres,118, 11036-11058. https://doi.org/10.1002/jgrd.50868
[31]
Wigley, T. M. L. (2006). A Combined Mitigation/Geoengineering Approach to Climate Stabilization. Science,314, 452-454. https://doi.org/10.1126/science.1131728
[32]
Williams, E. N., & Morrow, S. L. (2009). Achieving Trustworthiness in Qualitative Research: A Pan-Paradigmatic Perspective. PsychotherapyResearch,19, 576-582. https://doi.org/10.1080/10503300802702113
[33]
Xia, L., Robock, A., Cole, J., Curry, C. L., Ji, D., Jones, A. et al. (2014). Solar Radiation Management Impacts on Agriculture in China: A Case Study in the Geoengineering Model Intercomparison Project (GeoMIP). JournalofGeophysicalResearch:Atmospheres,119, 8695-8711. https://doi.org/10.1002/2013jd020630
[34]
Yang, H., Dobbie, S., Ramirez‐Villegas, J., Feng, K., Challinor, A. J., Chen, B. et al. (2016). Potential Negative Consequences of Geoengineering on Crop Production: A Study of Indian Groundnut. GeophysicalResearchLetters,43, 11786-11795. https://doi.org/10.1002/2016gl071209
[35]
Zebaze, S., Jain, S., Salunke, P., Shafiq, S., & Mishra, S. K. (2019). Assessment of CMIP5 Multimodel Mean for the Historical Climate of Africa. AtmosphericScienceLetters,20, e926. https://doi.org/10.1002/asl.926