全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Simulation of the Effects of SO2 Injection into the Stratosphere on Precipitation and Temperature Regimes in the Sahel, West Africa

DOI: 10.4236/gep.2025.133012, PP. 206-237

Keywords: Geoengineering, Climate Change, Stratospheric Aerosol Injection, Global Warming, Sahel

Full-Text   Cite this paper   Add to My Lib

Abstract:

To address global warming and its impact on the Sahel, particularly rising temperatures and changing precipitation patterns, this study explores Solar Radiation Management (SRM) through stratospheric aerosol injection (SAI). Using the IPSL-CM5A-LR model, we simulate the effects of SO2 injection on temperature and precipitation. We analyze data across three scenarios: historical greenhouse gas concentrations, RCP4.5 without SO2 injection, and RCP4.5 combined with SO2 geoengineering (G3). Climate data for two future periods (2020-2050 and 2050-2080) are compared to historical data (1950-2005) to assess seasonal and spatial variations in climate parameters. This study aims to evaluate the impact of SAI on temperature and precipitation in the Sahel, comparing historical data with RCP4.5 and SAI scenarios. It seeks to determine SAI’s effectiveness in mitigating warming and identify potential side effects on the region’s climate from 2020 to 2080. Results indicate that stratospheric SO2 injection in the Sahel moderates seasonal temperatures, sustaining reductions through 2050-2080. The injection stabilizes temperatures, especially in summer, potentially mitigating heat stress during the hot season. However, SAI exhibits varied impacts on precipitation patterns across seasons. While it enhances rainfall in June and July, it generally reduces precipitation intensity in May, June, and August. These effects underscore the complex interplay between SAI and regional climate dynamics. Overall, stratospheric SO2 injection emerges as a promising tool for climate mitigation in the Sahel, offering both opportunities and challenges that warrant further investigation as global efforts to address climate change intensify. Understanding these dynamics is crucial for informed decision-making regarding climate intervention strategies in vulnerable regions like the Sahel.

References

[1]  Adeniyi, M. O. (2016). The Consequences of the IPCC AR5 RCPs 4.5 and 8.5 Climate Change Scenarios on Precipitation in West Africa. Climatic Change, 139, 245-263.
https://doi.org/10.1007/s10584-016-1774-2
[2]  Adeniyi, M. O., & Nweke, G. C. (2019). Performance of CMIP5 Models in Temperature Simulation over West Africa. Journal of the Nigerian Association of Mathematical Physics, 49, 147-158
[3]  Budyko, M. I. (1977). Present-Day Climatic Changes. Tellus, 29, 193-204.
[4]  Cong, R., & Brady, M. (2012). The Interdependence between Rainfall and Temperature: Copula Analyses. The Scientific World Journal, 2012, Article ID: 405675.
https://doi.org/10.1100/2012/405675
[5]  Crutzen, P. J. (2006). Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma? Climatic Change, 77, 211-220.
https://doi.org/10.1007/s10584-006-9101-y
[6]  Curry, C. L., Sillmann, J., Bronaugh, D., Alterskjaer, K., Cole, J. N. S., Ji, D. et al. (2014). A Multimodel Examination of Climate Extremes in an Idealized Geoengineering Experiment. Journal of Geophysical Research: Atmospheres, 119, 3900-3923.
https://doi.org/10.1002/2013jd020648
[7]  Dagon, K., & Schrag, D. P. (2016). Exploring the Effects of Solar Radiation Management on Water Cycling in a Coupled Land-Atmosphere Model. Journal of Climate, 29, 2635-2650.
https://doi.org/10.1175/jcli-d-15-0472.1
[8]  Dufresne, J., Foujols, M., Denvil, S., Caubel, A., Marti, O., Aumont, O. et al. (2013). Climate Change Projections Using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dynamics, 40, 2123-2165.
https://doi.org/10.1007/s00382-012-1636-1
[9]  Effiong, U., & Neitzel, R. L. (2016). Assessing the Direct Occupational and Public Health Impacts of Solar Radiation Management with Stratospheric Aerosols. Environmental Health, 15, Article No. 7.
https://doi.org/10.1186/s12940-016-0089-0
[10]  Ezeife, N. D. (2014). Projected Impact of Global Warming on West Africa: Case for Regional and Transnational Adaptive Measures. Annual Survey of International & Comparative Law, 20, Article 9.
[11]  Fontaine, B., Roucou, P., & Monerie, P. (2011). Changes in the African Monsoon Region at Medium-Term Time Horizon Using 12 AR4 Coupled Models under the A1B Emissions Scenario. Atmospheric Science Letters, 12, 83-88.
https://doi.org/10.1002/asl.321
[12]  Giannini, A., Salack, S., Lodoun, T., Ali, A., Gaye, A. T., & Ndiaye, O. (2013). A Unifying View of Climate Change in the Sahel Linking Intra-Seasonal, Interannual and Longer Time Scales. Environmental Research Letters, 8, Article ID: 024010.
https://doi.org/10.1088/1748-9326/8/2/024010
[13]  Govindasamy, B., & Caldeira, K. (2000). Geoengineering Earth’s Radiation Balance to Mitigate CO2‐Induced Climate Change. Geophysical Research Letters, 27, 2141-2144.
https://doi.org/10.1029/1999gl006086
[14]  Harding, A. R., Ricke, K., Heyen, D., MacMartin, D. G., & Moreno-Cruz, J. (2020). Climate Econometric Models Indicate Solar Geoengineering Would Reduce Inter-Country Income Inequality. Nature Communications, 11, Article No. 227.
https://doi.org/10.1038/s41467-019-13957-x
[15]  Haywood, J. M., Jones, A., Bellouin, N., & Stephenson, D. (2013). Asymmetric Forcing from Stratospheric Aerosols Impacts Sahelian Rainfall. Nature Climate Change, 3, 660-665.
https://doi.org/10.1038/nclimate1857
[16]  Irvine, P., Emanuel, K., He, J., Horowitz, L. W., Vecchi, G., & Keith, D. (2019). Halving Warming with Idealized Solar Geoengineering Moderates Key Climate Hazards. Nature Climate Change, 9, 295-299.
https://doi.org/10.1038/s41558-019-0398-8
[17]  James, R., & Washington, R. (2013). Changes in African Temperature and Precipitation as-Sociated with Degrees of Global Warming. Climatic Change, 117, 859-872.
[18]  Keith, D. W., & Parker, A. (2013). The Fate of an Engineered Planet. Scientific American, 308, 34-36.
https://doi.org/10.1038/scientificamerican0113-34
[19]  Kravitz, B., Robock, A., Boucher, O., Schmidt, H., Taylor, K. E., Stenchikov, G. et al. (2011). The Geoengineering Model Intercomparison Project (GeoMIP). Atmospheric Science Letters, 12, 162-167.
https://doi.org/10.1002/asl.316
[20]  Krinner, G., Viovy, N., de Noblet‐Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P. et al. (2005). A Dynamic Global Vegetation Model for Studies of the Coupled Atmosphere‐biosphere System. Global Biogeochemical Cycles, 19, GB1015.
https://doi.org/10.1029/2003gb002199
[21]  Kuswanto, H., Kravitz, B., Miftahurrohmah, B., Fauzi, F., Sopahaluwaken, A., & Moore, J. (2021). Impact of Solar Geoengineering on Temperatures over the Indonesian Maritime Continent. International Journal of Climatology, 42, 2795-2814.
https://doi.org/10.1002/joc.7391
[22]  Monerie, P., Fontaine, B., & Roucou, P. (2013). Expected Future Changes in the African Monsoon between 2030 and 2070 Using Some CMIP3 and CMIP5 Models under a Medium-Low RCP Scenario. Journal of Geophysical Research: Atmospheres, 117, D16111.
https://doi.org/10.1029/2012jd017510
[23]  Mukherjee, S., Aadhar, S., Stone, D., & Mishra, V. (2018). Increase in Extreme Precipitation Events under Anthropogenic Warming in India. Weather and Climate Extremes, 20, 45-53.
https://doi.org/10.1016/j.wace.2018.03.005
[24]  Niang, I., Ruppel, O. C., Abdrabo, M. A., Essel, A., Lennard, C., Padgham, J., & Urquhart, P. (2014). Africa. In Climate Change. Impacts, Adaptation, and Vulnerability. Part: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Inter-Governmental Panel on Climate Change (pp. 1199-1265). Cambridge University Press.
[25]  Niemeier, U., & Timmreck, C. (2015). What Is the Limit of Climate Engineering by Stratospheric Injection of SO2? Atmospheric Chemistry and Physics, 15, 9129-9141.
https://doi.org/10.5194/acp-15-9129-2015
[26]  Pongratz, J., Lobell, D. B., Cao, L., & Caldeira, K. (2012). Crop Yields in a Geoengineered Climate. Nature Climate Change, 2, 101-105.
https://doi.org/10.1038/nclimate1373
[27]  Proctor, J., Hsiang, S., Burney, J., Burke, M., & Schlenker, W. (2018). Estimating Global Agricultural Effects of Geoengineering Using Volcanic Eruptions. Nature, 560, 480-483.
https://doi.org/10.1038/s41586-018-0417-3
[28]  Robock, A., Oman, L., & Stenchikov, G. L. (2008). Regional Climate Responses to Geoengineering with Tropical and Arctic SO2 Injections. Journal of Geophysical Research: Atmospheres, 113, D16101.
https://doi.org/10.1029/2008jd010050
[29]  Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93, 485-498.
https://doi.org/10.1175/bams-d-11-00094.1
[30]  Tilmes, S., Fasullo, J., Lamarque, J., Marsh, D. R., Mills, M., Alterskjær, K. et al. (2013). The Hydrological Impact of Geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research: Atmospheres, 118, 11036-11058.
https://doi.org/10.1002/jgrd.50868
[31]  Wigley, T. M. L. (2006). A Combined Mitigation/Geoengineering Approach to Climate Stabilization. Science, 314, 452-454.
https://doi.org/10.1126/science.1131728
[32]  Williams, E. N., & Morrow, S. L. (2009). Achieving Trustworthiness in Qualitative Research: A Pan-Paradigmatic Perspective. Psychotherapy Research, 19, 576-582.
https://doi.org/10.1080/10503300802702113
[33]  Xia, L., Robock, A., Cole, J., Curry, C. L., Ji, D., Jones, A. et al. (2014). Solar Radiation Management Impacts on Agriculture in China: A Case Study in the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research: Atmospheres, 119, 8695-8711.
https://doi.org/10.1002/2013jd020630
[34]  Yang, H., Dobbie, S., Ramirez‐Villegas, J., Feng, K., Challinor, A. J., Chen, B. et al. (2016). Potential Negative Consequences of Geoengineering on Crop Production: A Study of Indian Groundnut. Geophysical Research Letters, 43, 11786-11795.
https://doi.org/10.1002/2016gl071209
[35]  Zebaze, S., Jain, S., Salunke, P., Shafiq, S., & Mishra, S. K. (2019). Assessment of CMIP5 Multimodel Mean for the Historical Climate of Africa. Atmospheric Science Letters, 20, e926.
https://doi.org/10.1002/asl.926

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133