全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Deep Learning for Neuroimaging-Based Brain Disorder Detection: Advancements and Future Perspectives

DOI: 10.4236/aad.2024.134007, PP. 95-116

Keywords: Deep Learning, Brain Disorder Detection, Neuroimaging Data

Full-Text   Cite this paper   Add to My Lib

Abstract:

This review focuses on the recent advancements in neuroimaging enabled by deep learning techniques, specifically highlighting their applications in brain disorder detection and diagnosis. The integration of convolutional neural networks (CNNs) and recurrent neural networks (RNNs) has significantly improved feature extraction, pattern recognition, and predictive modeling, leading to enhanced accuracy, sensitivity, and specificity in diagnosing Alzheimer’s, Parkinson’s, schizophrenia, and brain tumors across MRI, fMRI, and PET scans. Despite these advancements, current challenges persist, including limitations in interpretability, data scarcity, and ethical concerns. To address these issues, future perspectives involve leveraging transfer learning, federated learning, and multimodal data sources. This review aims to provide a comprehensive overview of the current state of deep learning in neuroimaging, highlight the existing challenges, and discuss potential solutions for future innovation. By addressing the current limitations and exploring innovative techniques, deep learning can unlock new possibilities in neuroimaging, ultimately leading to improved diagnosis, treatment, and patient outcomes.

References

[1]  World Health Organization (2019) Global Action Plan on Physical Activity 2018-2030: More Active People for A Healthier World.
[2]  Muller, A.E., Hafstad, E.V., Himmels, J.P.W., Smedslund, G., Flottorp, S., Stensland, S.Ø., et al. (2020) The Mental Health Impact of the COVID-19 Pandemic on Healthcare Workers, and Interventions to Help Them: A Rapid Systematic Review. Psychiatry Research, 293, Article 113441.
https://Doi.Org/10.1016/J.Psychres.2020.113441
[3]  Baig, M.A., Klein, J.P. and Mechtler, L.L. (2016) Imaging of Brain Tumors. CONTINUUM: Lifelong Learning in Neurology, 22, 1529-1552.
https://doi.org/10.1212/con.0000000000000388
[4]  Larson, D.B. and Shear, T.D. (2016) Radiologist as Consultant: A History of Interpreting Images and the Practice of Medicine. Radiology, 280, 622-628.
[5]  Arbabshirani, M.R., Plis, S., Sui, J. and Calhoun, V.D. (2017) Single Subject Prediction of Brain Disorders in Neuroimaging: Promises and Pitfalls. NeuroImage, 145, 137-165.
https://Doi.Org/10.1016/J.Neuroimage.2016.02.079
[6]  Le Bihan, D. (2014) Diffusion MRI: What Water Tells Us about the Brain. EMBO Molecular Medicine, 6, 569-573.
[7]  Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., et al. (2019) A Guide to Deep Learning in Healthcare. Nature Medicine, 25, 24-29.
https://Doi.Org/10.1038/S41591-018-0316-Z
[8]  World Health Organization (2021) Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2019. World Health Organization.
https://Www.Who.Int/Data/Gho/Data/Themes/Mortality-And-Global-Health-Estimates/Ghe-Leading-Causes-Of-Death
[9]  Gordillo, N., Montseny, E. and Sobrevilla, P. (2013) State of the Art Survey on MRI Brain Tumor Segmentation. Magnetic Resonance Imaging, 31, 1426-1438.
https://doi.org/10.1016/j.mri.2013.05.002
[10]  Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L. and Erickson, B.J. (2017) Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. Journal of Digital Imaging, 30, 449-459.
https://Doi.Org/10.1007/S10278-017-9983-4
[11]  Cheng, J.-Z., Ni, D., Chou, Y.-H., Qin, J., Tiu, C.-M., Chang, Y.-C., et al. (2016) Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Scientific Reports, 6, Article No. 24454.
https://Doi.Org/10.1038/Srep24454
[12]  Razzak, M.I., Naz, S. and Zaib, A. (2018) Deep Learning for Medical Image Processing: Overview, Challenges and the Future. In: Dey, N., Ashour, A., Borra, S., Eds., Classification in BioApps. Lecture Notes in Computational Vision and Biomechanics, Springer, Cham, 323-350.
https://doi.org/10.1007/978-3-319-65981-7_12
[13]  Amin, H.U., Yusoff, M.Z. and Ahmad, R.F. (2020) A Novel Approach Based on Wavelet Analysis and Arithmetic Coding for Automated Detection and Diagnosis of Epileptic Seizure in EEG Signals Using Machine Learning Techniques. Biomedical Signal Processing and Control, 56, 101707.
https://doi.org/10.1016/j.bspc.2019.101707
[14]  Sarraf, S. and Tofighi, G. (2016) Deep Learning-Based Pipeline to Recognize Alzheimer’s Disease Using FMRI Data. Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), San Francisco, 6-7 December 2016, 18-26.
[15]  Korolev, S., Safiullin, A., Belyaev, M. and Dodonova, Y. (2017) Deep Learning for Predicting Disease Progression in Alzheimer’s Disease: A Model Comparison Study. PLOS ONE, 12, E0171527.
[16]  Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P. and Zhavoronkov, A. (2016) Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data. Molecular Pharmaceutics, 13, 2524-2530.
https://Doi.Org/10.1021/Acs.Molpharmaceut.6b00248
[17]  Zhang, J., Chang, S., Zhan, X., Zheng, W. and Yang, R. (2017) Deep Learning in the Detection of Brain Disorders: A Survey. IEEE Access, 5, 15103-15121.
[18]  Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., et al. (2017) A Survey on Deep Learning in Medical Image Analysis. Medical Image Analysis, 42, 60-88.
https://Doi.Org/10.1016/J.Media.2017.07.005
[19]  Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., et al. (2017) Brain Tumor Segmentation with Deep Neural Networks. Medical Image Analysis, 35, 18-31.
https://Doi.Org/10.1016/J.Media.2016.05.004
[20]  Khvostikov, A., Aderghal, K., Benois-Pineau, J., Krylov, A. and Catheline, G. (2018) 3D CNN-Based Classification Using sMRI and MD-DTI Images for Alzheimer Disease Studies. arXiv preprint arXiv: 1801.05968.
[21]  Pham, V.H., Kim, J. and Kwon, H.J. (2020) A Survey on Deep Learning in Medical Signal Analysis: A Focus on Epilepsy Detection. Computer Methods and Programs in Biomedicine, 187, Article 104961.
[22]  Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H. and Adeli, H. (2018) Deep Convolutional Neural Network for the Automated Detection and Diagnosis of Seizure Using EEG Signals. Computers in Biology and Medicine, 100, 270-278.
https://Doi.Org/10.1016/J.Compbiomed.2017.09.017
[23]  Suk, H.I. and Shen, D. (2016) Deep Learning-Based Feature Representation for AD/MCI Classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C. and Navab, N., Eds., Medical Image Computing and Computer-Assisted InterventionMICCAI 2013, Springer, 583-590.
https://doi.org/10.1007/978-3-642-40763-5_72
[24]  Ghafoorian, M., Karssemeijer, N., Heskes, T. and Bergers, E. (2017) Location-Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities. Scientific Reports, 7, Article No. 5110.
[25]  Chen, H., Zhang, Y., Zhang, W., Lin, G., Gao, Y. and Wang, S. (2020) Dual-Stage Attention-Based Recurrent Neural Network for Time-Series Prediction of Alzheimer’s Disease. Neurocomputing, 384, 154-164.
[26]  Chen, C., Qin, C., Qiu, H.Q., Tarroni, G., Duan, J., Bai, W.J. and Rueckert, D. (2018) Deep Learning for Cardiac Image Segmentation: A Review. Frontiers in Cardiovascular Medicine, 7, Article 25.
[27]  Chen, L., Wu, Y., DSouza, A.M., Abidin, A.Z., Wismüller, A. and Xu, C. (2018) MRI Tumor Segmentation with Densely Connected 3D CNN. Medical Imaging 2018: Image Processing, 10574, 357-364.
[28]  Bengio, Y., Courville, A. and Vincent, P. (2013) Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1798-1828.
https://doi.org/10.1109/TPAMI.2013.50
[29]  Zhou, D., Bousquet, O., Lal, T.N., Weston, J. and Schölkopf, B. (2008) Learning with Local and Global Consistency. In: Thrun, S., Saul, L. and Schölkopf, B., Eds., Advances in Neural Information Processing Systems, MIT Press, 321-328.
[30]  Liu, W., Wang, Z., Liu, X. and Zeng, N. (2014) Transfer Learning for Brain-Computer Interfaces: A Euclidean Space Data Alignment Approach. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22, 625-637.
[31]  Alzheimer’s Association (2021) 2021 Alzheimer’s Disease Facts and Figures. Alzheimers & Dementia, 17, 327-406.
https://doi.org/10.1002/alz.12328
[32]  Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D. and Glocker, B. (2017) Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation. Medical Image Analysis, 36, 61-78.
https://doi.org/10.1016/j.media.2016.10.004
[33]  Smith, S.M. (2002) Fast Robust Automated Brain Extraction. Human Brain Mapping, 17, 143-155.
https://doi.org/10.1002/hbm.10062
[34]  Dale, A.M., Fischl, B. and Sereno, M.I. (1999) Cortical Surface-Based Analysis. I. Segmentation and Surface Reconstruction. NeuroImage, 9, 179-194.
https://doi.org/10.1006/nimg.1998.0395
[35]  Iglesias, J.E., Liu, C.Y., Thompson, P.M. and Tu, Z. (2011) Robust Brain Extraction Across Datasets and Comparison with Publicly Available Methods. IEEE Transactions on Medical Imaging, 30, 1617-1634.
https://doi.org/10.1109/TMI.2011.2138152
[36]  Mok, T.C.W. and Chung, A.C.S. (2020) Fast Symmetric Diffeomorphic Image Registration with Convolutional Neural Networks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 13-19 June 2020, 4644-4653.
https://doi.org/10.1109/cvpr42600.2020.00470
[37]  Jenkinson, M., Bannister, P., Brady, M. and Smith, S. (2002) Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage, 17, 825-841.
https://doi.org/10.1006/nimg.2002.1132
[38]  Avants, B.B., Epstein, C.L., Grossman, M. and Gee, J.C. (2008) Symmetric Diffeomorphic Image Registration with Cross-Correlation: Evaluating Automated Labeling of Elderly and Neurodegenerative Brain. Medical Image Analysis, 12, 26-41.
https://doi.org/10.1016/j.media.2007.06.004
[39]  Ashburner, J. and Friston, K.J. (2005) Unified Segmentation. NeuroImage, 26, 839-851.
https://doi.org/10.1016/j.neuroimage.2005.02.018
[40]  Klein, S., Staring, M., Murphy, K., Viergever, M.A. and Pluim, J.P. (2010) Elastix: A Toolbox for Intensity-Based Medical Image Registration. IEEE Transactions on Medical Imaging, 29, 196-205.
https://doi.org/10.1109/TMI.2009.2035616
[41]  Yoo, T.S. (2002) Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis. CRC Press.
[42]  Sled, J.G., Zijdenbos, A.P. and Evans, A.C. (1998) A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data. IEEE Transactions on Medical Imaging, 17, 87-97.
https://doi.org/10.1109/42.668698
[43]  Jovicich, J., Czanner, S., Han, X., Salat, D., Van Der Kouwe, A., Quinn, B., et al. (2006) MRI-Derived Measurements of Human Subcortical, Ventricular and Intracranial Brain Volumes: Reliability Effects of Scan Sessions, Acquisition Sequences, Data Analyses, Scanner Upgrade, Scanner Vendors and Field Strengths. NeuroImage, 30, 827-841.
[44]  Nandi, D., Ashour, A.S., Samanta, S., Chakraborty, S., Salem, M.A.M. and Dey, N. (2015) Principal Component Analysis in Medical Image Processing: A Study. International Journal of Image Mining, 1, 65.
https://doi.org/10.1504/ijim.2015.070024
[45]  Stein, J.L., Medland, S.E., Vasquez, A.A., Hibar, D.P., Senstad, R.E., Winkler, A.M., et al. (2012) Identification of Common Variants Associated with Human Hippocampal and Intracranial Volumes. Nature Genetics, 44, 552-561.
https://doi.org/10.1038/ng.2250
[46]  Yeung, K.Y. and Ruzzo, W.L. (2001) Principal Component Analysis for Clustering Gene Expression Data. Bioinformatics, 17, 763-774.
https://doi.org/10.1093/bioinformatics/17.9.763
[47]  Hyvärinen, A. and Oja, E. (2000) Independent Component Analysis: Algorithms and Applications. Neural Networks, 13, 411-430.
https://doi.org/10.1016/s0893-6080(00)00026-5
[48]  Tan, P., Wang, X. and Wang, Y. (2020) Dimensionality Reduction in Evolutionary Algorithms-Based Feature Selection for Motor Imagery Brain-Computer Interface. Swarm and Evolutionary Computation, 52, 100597.
https://doi.org/10.1016/j.swevo.2019.100597
[49]  Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017) Imagenet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60, 84-90.
https://doi.org/10.1145/3065386
[50]  Andrew, G. and Menglong, Z. (2017) Efficient Convolutional Neural Networks for Mobile Vision Applications. Mobilenets, 10, 151.
[51]  Tan, M. and Le, Q.V. (2019) Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks. Proceedings of the 36th International Conference on Machine Learning, 97, 6105-6114.
[52]  Bennet, J., Arul Ganaprakasam, C. and Arputharaj, K. (2014) A Discrete Wavelet Based Feature Extraction and Hybrid Classification Technique for Microarray Data Analysis. The Scientific World Journal, 2014, 1-9.
https://doi.org/10.1155/2014/195470
[53]  Zhang, Y. and Zhang, Y.Q. (2019) Image Compression Using Deep Neural Networks: A Survey. IEEE Access, 7, 149292-149308.
[54]  Thakur, A., Kumar, A., Srivastava, A. and Sharma, P. (2019) A Novel Approach for Detection and Classification of EEG Signals Using Wavelet Transform and Deep Learning. Journal of Ambient Intelligence and Humanized Computing, 10, 987-1001.
[55]  Rivers, T.J., Benesty, J. and Chen, J. (2019) Signal Enhancement and Noise Reduction in Speech Processing Using Sparse Signal Representation. Springer.
[56]  Zhang, Y., Kuo, C.C.J. and Chen, P.C.Y. (2006) Fault Detection and Classification in Chemical Processes Using Ensemble of Decision Trees. Computers & Chemical Engineering, 30, 465-474.
[57]  Dalal, N. and Triggs, B. (2005) Histograms of Oriented Gradients for Human Detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 1, 886-893.
https://doi.org/10.1109/CVPR.2005.177
[58]  Dalal, N. and Triggs, B. (2006) Human Detection Using Oriented Histograms of Flow and Appearance. In: Leonardis, A., Bischof, H. and Pinz, A., Eds., Computer VisionECCV 2006, Springer, 428-441.
https://doi.org/10.1007/11744047_33
[59]  Kasiviswanathan, H., Ramanathan, N. and Chellappa, R. (2011) A Robust Framework for Face Recognition. EURASIP Journal on Image and Video Processing, 1, 54.
[60]  Sivaraman, S. and Trivedi, M.M. (2012) Pedestrian Detection in Thermal Infrared Imagery Using Texture and Shape Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 1704-1716.
[61]  Laptev, I. (2008) On Space-Time Interest Points. International Journal of Computer Vision, 64, 107-123.
https://doi.org/10.1007/s11263-005-1838-7
[62]  Ojala, T., Pietikainen, M. and Maenpaa, T. (1994) Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 971-987.
https://doi.org/10.1109/TPAMI.2002.1017623
[63]  Heikkilä, M., Ahonen, T., Pietikäinen, M. and Schmid, C. (2009) Description of Interest Regions with Local Binary Patterns. Pattern Recognition, 42, 425-436.
https://doi.org/10.1016/j.patcog.2008.08.014
[64]  Jenicka, S. and Suruliandi, A. (2014) Fuzzy Texture Model and Support Vector Machine Hybridization for Land Cover Classification of Remotely Sensed Images. Journal of Applied Remote Sensing, 8, 083540.
https://doi.org/10.1117/1.jrs.8.083540
[65]  Aguero, H.P. (2022) Review of the Current Technologies and Applications of Digital Image Processing. Journal of Biomedical and Sustainable Healthcare Applications, 2, 148-158.
https://doi.org/10.53759/0088/jbsha202202016
[66]  Ahonen, T., Hadid, A. and Pietikäinen, M. (2006) Face Recognition with Local Binary Patterns. In: Pajdla, T. and Matas, J., Eds., Computer VisionECCV 2004, Springer, 469-481.
https://doi.org/10.1007/978-3-540-24670-1_36
[67]  Zhao, G., Ahonen, T. and Pietikainen, M. (2005) Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 915-928.
https://doi.org/10.1109/TPAMI.2007.1110
[68]  Song, K., Yan, Y., Chen, W. and Zhang, X. (2013) Research and Perspective on Local Binary Pattern. Acta Automatica Sinica, 39, 730-744.
https://doi.org/10.1016/s1874-1029(13)60051-8
[69]  Johnson, M. (2015) Text Analysis for the Social Sciences: Methods for Drawing Statistical Inferences from Texts and Transcripts. University of Chicago Press.
[70]  Jones, K.S. (2012) A Statistical Interpretation of Term Specificity and Its Application in Retrieval. Journal of Documentation, 28, 11-21.
https://doi.org/10.1108/eb026526
[71]  Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) ImageNet Classification with Deep Convolutional Neural Networks. In: Pereira, F., Burges, C.J., Bottou, L. and, Weinberger, K.Q., Eds., Advances in Neural Information Processing Systems, Association for Computing Machinery, 84-90.
[72]  McKinney, W. (2011) Pandas: A Foundational Python Library for Data Analysis and Statistics. Python for High Performance and Scientific Computing, 1-9.
[73]  Dasu, T. and Johnson, T. (2003) Exploratory Data Mining and Data Cleaning. John Wiley & Sons.
https://doi.org/10.1002/0471448354
[74]  Khder, M. (2021) Web Scraping or Web Crawling: State of Art, Techniques, Approaches and Application. International Journal of Advances in Soft Computing and Its Applications, 13, 145-168.
https://doi.org/10.15849/ijasca.211128.11
[75]  Williams, M. (2019) Feature Engineering and Selection: A Practical Approach for Predictive Models. CRC Press.
[76]  Zheng, A. (2018) Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. O’Reilly Media.
[77]  Chakraborty, T. and Kumar, U. (2022) Loss Function. In: Daya Sagar, B.S., Cheng, Q., McKinley, J., Agterberg, F., Eds., Encyclopedia of Mathematical Geosciences. Encyclopedia of Earth Sciences Series. Springer, Cham, 1-6.
https://doi.org/10.1007/978-3-030-26050-7_187-1
[78]  Bottou, L. (2010) Large-Scale Machine Learning with Stochastic Gradient Descent. In: Lechevallier, Y. and Saporta, G., Eds., Proceedings of COMPSTAT’2010, Physica-Verlag HD, 177-186.
https://doi.org/10.1007/978-3-7908-2604-3_16
[79]  Bergstra, J. and Bengio, Y. (2012) Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research, 13, 281-305.
[80]  Du, L.X., Roy, S., Wang, P., Li, Z.G., Qiu, X.T., Zhang, Y., et al. (2024) Unveiling the Future: Advancements in MRI Imaging for Neurodegenerative Disorders. Ageing Research Reviews, 95, Article 102230.
https://doi.org/10.1016/j.arr.2024.102230
[81]  Wang, J., Wang, J., Wang, S. and Zhang, Y. (2023) Deep Learning in Pediatric Neuroimaging. Displays, 80, Article 102583.
https://doi.org/10.1016/j.displa.2023.102583

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133