全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of High Glucose and Carboxymethyl-Lysine on Osteocyte Gene Expression

DOI: 10.4236/ajmb.2025.152012, PP. 150-169

Keywords: Osteocytes, Advanced Glycation End Products (AGEs), Diabetes Mellitus, Bone Fragility, Inflammation, Glycation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diabetes mellitus (DM) is associated with increased bone fragility despite normal or elevated bone mineral density, partially due to the accumulation of advanced glycation end products (AGEs) in bone tissue. AGEs, such as carboxymethyl lysine (CML), impair osteocyte function by activating the receptor for advanced glycation end products (RAGE), triggering oxidative stress and inflammatory responses. This study aimed to investigate the effects of high glucose (HG) and CML on bone remodeling, glycation, inflammatory markers, and cellular functions in osteocytes. Using the murine osteocyte cell line OCY454-12H, we treated cells with HG (30 mM glucose) or 3 μM CML to simulate diabetic conditions. We assessed the expression of bone remodeling markers (SOST, RANKL, OPG, CTsK), glycation markers (RAGE, AGER1), inflammatory cytokines (IL-6, TNF-α), and cellular functions, including proliferation, viability, and apoptosis, using quantitative PCR and functional assays. HG treatment resulted in a 10-fold increase in SOST expression (9.3 vs. 0.9, p ≤ 0.0001) and a 2.4-fold increase in RANKL expression (2.75 vs. 1.15, p ≤ 0.0001), with a concurrent 2-fold increase in OPG (2.60 vs. 1.04, p ≤ 0.0001). The RANKL/OPG ratio remained unchanged (p = 0.15). HG also significantly increased RAGE expression by 3.67-fold (4.20 vs. 1.15, p ≤ 0.0001) and AGER1 by 1.65-fold (1.94 vs. 1.15, p ≤ 0.0001), along with a 2.02-fold increase in IL-6 (2.32 vs. 1.12, p ≤ 0.001) and a 7.35-fold increase in TNF-α (7.04 vs. 1.04, p ≤ 0.0001). Cell viability and proliferation were significantly higher under HG, accompanied by increased caspase-3 activity, indicating enhanced apoptosis. In contrast, CML exposure significantly upregulated RAGE (3.18 vs. 1.15, p ≤ 0.0001) and AGER1 (2.10 vs. 1.14, p = 0.028) but had no significant effects on bone remodeling markers, inflammatory cytokines, or cellular functions at physiological concentrations. Our findings demonstrate that HG disrupts osteocyte function by altering bone remodeling, glycation, and inflammatory pathways, while CML at physiological levels selectively activates glycation markers without inducing broader cellular dysfunction. These results underscore the role of the AGE-RAGE axis in diabetic bone fragility and highlight the need for future in vivo studies to explore therapeutic strategies targeting AGE accumulation and RAGE signaling in bone.

References

[1]  Cooper, I.D., Brookler, K.H. and Crofts, C.A.P. (2021) Rethinking Fragility Fractures in Type 2 Diabetes: The Link between Hyperinsulinaemia and Osteofragilitas. Biomedicines, 9, Article No. 1165.
https://doi.org/10.3390/biomedicines9091165
[2]  Romero-Díaz, C., Duarte-Montero, D., Gutiérrez-Romero, S.A. and Mendivil, C.O. (2020) Diabetes and Bone Fragility. Diabetes Therapy, 12, 71-86.
https://doi.org/10.1007/s13300-020-00964-1
[3]  Britton, M., Monahan, G.E., Murphy, C.G., Kearns, S.R., Devitt, A.T., Okwieka, A., et al. (2024) An Investigation of Composition, Morphology, Mechanical Properties, and Microdamage Accumulation of Human Type 2 Diabetic Bone. Bone, 187, Article ID: 117190.
https://doi.org/10.1016/j.bone.2024.117190
[4]  Lekkala, S., Taylor, E.A., Hunt, H.B. and Donnelly, E. (2019) Effects of Diabetes on Bone Material Properties. Current Osteoporosis Reports, 17, 455-464.
https://doi.org/10.1007/s11914-019-00538-6
[5]  Arakawa, S., Suzuki, R., Kurosaka, D., Ikeda, R., Hayashi, H., Kayama, T., et al. (2020) Mass Spectrometric Quantitation of AGEs and Enzymatic Crosslinks in Human Cancellous Bone. Scientific Reports, 10, Article ID: 18774.
https://doi.org/10.1038/s41598-020-75923-8
[6]  Deeba, F., Younis, S., Qureshi, N., Mustafa, T., Iqbal, N. and Hussain, S. (2021) Effect of Diabetes Mellitus and Anti-Diabetic Drugs on Bone Health—A Review. Journal of Bioresource Management, 8, 131-148.
https://doi.org/10.35691/jbm.1202.0187
[7]  Chen, Y., Yu, L., Wang, Y., Wei, Y., Xu, Y., He, T., et al. (2019) D-Ribose Contributes to the Glycation of Serum Protein. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1865, 2285-2292.
https://doi.org/10.1016/j.bbadis.2019.05.005
[8]  Wang, B. and Vashishth, D. (2023) Advanced Glycation and Glycoxidation End Products in Bone. Bone, 176, Article ID: 116880.
https://doi.org/10.1016/j.bone.2023.116880
[9]  Cavati, G., Pirrotta, F., Merlotti, D., Ceccarelli, E., Calabrese, M., Gennari, L., et al. (2023) Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification. Antioxidants, 12, Article No. 928.
https://doi.org/10.3390/antiox12040928
[10]  Gao, Q., Jiang, Y., Zhou, D., Li, G., Han, Y., Yang, J., et al. (2024) Advanced Glycation End Products Mediate Biomineralization Disorder in Diabetic Bone Disease. Cell Reports Medicine, 5, Article ID: 101694.
https://doi.org/10.1016/j.xcrm.2024.101694
[11]  Semba, R.D., Beck, J., Sun, K., Egan, J.M., Carlson, O.D., Varadhan, R., et al. (2010) Relationship of a Dominant Advanced Glycation End Product, Serum Carboxymethyl-Lysine, and Abnormal Glucose Metabolism in Adults: The Baltimore Longitudinal Study of Aging. The Journal of nutrition, health and aging, 14, 507-513.
https://doi.org/10.1007/s12603-010-0105-y
[12]  Mossad, O., Batut, B., Yilmaz, B., Dokalis, N., Mezö, C., Nent, E., et al. (2022) Gut Microbiota Drives Age-Related Oxidative Stress and Mitochondrial Damage in Microglia via the Metabolite N6-carboxymethyllysine. Nature Neuroscience, 25, 295-305.
https://doi.org/10.1038/s41593-022-01027-3
[13]  Nerlich, A. and Schleicher, E.D. (1999) Nɛ-(carboxymethyl)lysine in Atherosclerotic Vascular Lesions as a Marker for Local Oxidative Stress. Atherosclerosis, 144, 41-47.
https://doi.org/10.1016/s0021-9150(99)00038-6
[14]  Ni, J., Yuan, X., Gu, J., Yue, X., Gu, X., Nagaraj, R.H., et al. (2009) Plasma Protein Pentosidine and Carboxymethyllysine, Biomarkers for Age-Related Macular Degeneration. Molecular & Cellular Proteomics, 8, 1921-1933.
https://doi.org/10.1074/mcp.m900127-mcp200
[15]  Boesten, D.M.P.H.J., Elie, A.G.I.M., Drittij-Reijnders, M., den Hartog, G.J.M. and Bast, A. (2014) Effect of Nɛ-Carboxymethyllysine on Oxidative Stress and the Glutathione System in Beta Cells. Toxicology Reports, 1, 973-980.
https://doi.org/10.1016/j.toxrep.2014.06.003
[16]  Kondapi, K., Silambanan, S., Kumar, L. and Moorthy, S. (2021) Does N-Carboxymethyl Lysine Serve as a Prognostic Biomarker of Diabetic Nephropathy? Journal of Clinical and Diagnostic Research, 15, OC42-OC47.
https://doi.org/10.7860/jcdr/2021/46489.14575
[17]  Aroni, A., Detopoulou, P., Presvelos, D., Kostopoulou, E., Ioannidis, A., Panoutsopoulos, G.I., et al. (2024) A One-Month Advanced Glycation End Products—Restricted Diet Improves CML, RAGE, Metabolic and Inflammatory Profile in Patients with End-Stage Renal Disease Undergoing Haemodialysis. International Journal of Molecular Sciences, 25, Article No. 8893.
https://doi.org/10.3390/ijms25168893
[18]  Turki Jalil, A., Alameri, A.A., Iqbal Doewes, R., El-Sehrawy, A.A., Ahmad, I., Ramaiah, P., et al. (2022) Circulating and Dietary Advanced Glycation End Products and Obesity in an Adult Population: A Paradox of Their Detrimental Effects in Obesity. Frontiers in Endocrinology, 13, Article ID: 966590.
https://doi.org/10.3389/fendo.2022.966590
[19]  Senatus, L., MacLean, M., Arivazhagan, L., Egana-Gorrono, L., Lopez-Diez, R., Manigrasso, M.B., et al. (2021) Inflammation Meets Metabolism Roles: For the Receptor for Advanced Glycation End Products Axis in Cardiovascular Disease. Immunometabolism, 3, e210024.
https://doi.org/10.20900/immunometab20210024
[20]  Gaens, K.H.J., Goossens, G.H., Niessen, P.M., van Greevenbroek, M.M., van der Kallen, C.J.H., Niessen, H.W., et al. (2014) Nε-(carboxymethyl)lysine-Receptor for Advanced Glycation End Product Axis Is a Key Modulator of Obesity-Induced Dysregulation of Adipokine Expression and Insulin Resistance. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 1199-1208.
https://doi.org/10.1161/atvbaha.113.302281
[21]  Dong, H., Zhang, Y., Huang, Y. and Deng, H. (2022) Pathophysiology of RAGE in Inflammatory Diseases. Frontiers in Immunology, 13, Article ID: 931473.
https://doi.org/10.3389/fimmu.2022.931473
[22]  Taguchi, K. and Fukami, K. (2023) RAGE Signaling Regulates the Progression of Diabetic Complications. Frontiers in Pharmacology, 14, Article ID: 1128872.
https://doi.org/10.3389/fphar.2023.1128872
[23]  Adeshara, K.A., Bangar, N., Diwan, A.G. and Tupe, R.S. (2022) Plasma Glycation Adducts and Various RAGE Isoforms Are Intricately Associated with Oxidative Stress and Inflammatory Markers in Type 2 Diabetes Patients with Vascular Complications. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 16, Article ID: 102441.
https://doi.org/10.1016/j.dsx.2022.102441
[24]  Dhaliwal, R., Ewing, S.K., Vashishth, D., Semba, R.D. and Schwartz, A.V. (2020) Greater Carboxy-Methyl-Lysine Is Associated with Increased Fracture Risk in Type 2 Diabetes. Journal of Bone and Mineral Research, 37, 265-272.
https://doi.org/10.1002/jbmr.4466
[25]  Sroga, G.E. and Vashishth, D. (2024) In Vivo Glycation—Interplay between Oxidant and Carbonyl Stress in Bone. JBMR Plus, 8, ziae110.
https://doi.org/10.1093/jbmrpl/ziae110
[26]  Araújo, R., Páscoa, R.N.M.J., Bernardino, R. and Gomes, P.S. (2025) Impact of High Glucose on Bone Collagenous Matrix Composition, Structure, and Organization: An Integrative Analysis Using an ex Vivo Model. Cells, 14, Article No. 130.
https://doi.org/10.3390/cells14020130
[27]  Sihota, P., Yadav, R.N., Dhaliwal, R., Bose, J.C., Dhiman, V., Neradi, D., et al. (2021) Investigation of Mechanical, Material, and Compositional Determinants of Human Trabecular Bone Quality in Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 106, e2271-e2289.
https://doi.org/10.1210/clinem/dgab027
[28]  Poundarik, A.A., Wu, P., Evis, Z., Sroga, G.E., Ural, A., Rubin, M., et al. (2015) A Direct Role of Collagen Glycation in Bone Fracture. Journal of the Mechanical Behavior of Biomedical Materials, 52, 120-130.
https://doi.org/10.1016/j.jmbbm.2015.08.012
[29]  Karim, L., Tang, S.Y., Sroga, G.E. and Vashishth, D. (2013) Differences in Non-Enzymatic Glycation and Collagen Cross-Links between Human Cortical and Cancellous Bone. Osteoporosis International, 24, 2441-2447.
https://doi.org/10.1007/s00198-013-2319-4
[30]  Hunt, H.B., Torres, A.M., Palomino, P.M., Marty, E., Saiyed, R., Cohn, M., et al. (2019) Altered Tissue Composition, Microarchitecture, and Mechanical Performance in Cancellous Bone from Men with Type 2 Diabetes Mellitus. Journal of Bone and Mineral Research, 34, 1191-1206.
https://doi.org/10.1002/jbmr.3711
[31]  Vaidya, R., Rezaee, T., Edwards, T., Bender, R., Vickneswaran, A., Chalivendra, V., et al. (2022) Accumulation of Fluorescent Advanced Glycation End Products and Carboxymethyl-Lysine in Human Cortical and Trabecular Bone. Bone Reports, 17, Article ID: 101634.
https://doi.org/10.1016/j.bonr.2022.101634
[32]  Yan, S.F., Ramasamy, R. and Schmidt, A.M. (2009) Receptor for AGE (RAGE) and Its Ligands—Cast into Leading Roles in Diabetes and the Inflammatory Response. Journal of Molecular Medicine, 87, 235-247.
https://doi.org/10.1007/s00109-009-0439-2
[33]  Wu, X., Shi, X., Chen, X. and Yin, Z. (2023) Advanced Glycation End Products Regulate the Receptor of Ages Epigenetically. Frontiers in Cell and Developmental Biology, 11, Article ID: 1062229.
https://doi.org/10.3389/fcell.2023.1062229
[34]  Ding, K., Wang, Z., Hamrick, M.W., Deng, Z., Zhou, L., Kang, B., et al. (2006) Disordered Osteoclast Formation in Rage-Deficient Mouse Establishes an Essential Role for RAGE in Diabetes Related Bone Loss. Biochemical and Biophysical Research Communications, 340, 1091-1097.
https://doi.org/10.1016/j.bbrc.2005.12.107
[35]  Hamada, Y., Kitazawa, S., Kitazawa, R., Kono, K., Goto, S., Komaba, H., et al. (2010) The Effects of the Receptor for Advanced Glycation End Products (RAGE) on Bone Metabolism under Physiological and Diabetic Conditions. Endocrine, 38, 369-376.
https://doi.org/10.1007/s12020-010-9390-9
[36]  Lalla, E., Lamster, I.B., Feit, M., Huang, L., Spessot, A., Qu, W., et al. (2000) Blockade of RAGE Suppresses Periodontitis-Associated Bone Loss in Diabetic Mice. Journal of Clinical Investigation, 105, 1117-1124.
https://doi.org/10.1172/jci8942
[37]  Teissier, T., Temkin, V., Pollak, R.D. and Cox, L.S. (2022) Crosstalk between Senescent Bone Cells and the Bone Tissue Microenvironment Influences Bone Fragility during Chronological Age and in Diabetes. Frontiers in Physiology, 13, Article ID: 812157.
https://doi.org/10.3389/fphys.2022.812157
[38]  Zhou, J., Liu, S., Bi, S., Kong, W., Qian, R., Xie, X., et al. (2023) The RAGE Signaling in Osteoporosis. Biomedicine & Pharmacotherapy, 165, Article ID: 115044.
https://doi.org/10.1016/j.biopha.2023.115044
[39]  Shi, P., Gong, H., Lyu, L., Liu, S., Jia, S., Li, C., et al. (2024) Low Bone Turnover Is Associated with Advanced Glycation End‐Products, Oxidative Stress, and Inflammation Induced by Type 2 Diabetes Mellitus. The FASEB Journal, 38, e23871.
https://doi.org/10.1096/fj.202400790r
[40]  Gong, Y., Liu, Z., Zhang, Y., Zhang, J., Zheng, Y. and Wu, Z. (2023) AGER1 Deficiency-Triggered Ferroptosis Drives Fibrosis Progression in Nonalcoholic Steatohepatitis with Type 2 Diabetes Mellitus. Cell Death Discovery, 9, Article No. 178.
https://doi.org/10.1038/s41420-023-01477-z
[41]  Zhou, M., Zhang, Y., Shi, L., Li, L., Zhang, D., Gong, Z., et al. (2024) Activation and Modulation of the Ages-Rage Axis: Implications for Inflammatory Pathologies and Therapeutic Interventions—A Review. Pharmacological Research, 206, Article ID: 107282.
https://doi.org/10.1016/j.phrs.2024.107282
[42]  Bellido, T. (2013) Osteocyte-Driven Bone Remodeling. Calcified Tissue International, 94, 25-34.
https://doi.org/10.1007/s00223-013-9774-y
[43]  Bonewald, L.F. (2010) The Amazing Osteocyte. Journal of Bone and Mineral Research, 26, 229-238.
https://doi.org/10.1002/jbmr.320
[44]  Chen, H., Senda, T. and Kubo, K. (2015) The Osteocyte Plays Multiple Roles in Bone Remodeling and Mineral Homeostasis. Medical Molecular Morphology, 48, 61-68.
https://doi.org/10.1007/s00795-015-0099-y
[45]  Bonewald, L.F. (2006) Mechanosensation and Transduction in Osteocytes. BoneKEy Osteovision, 3, 7-15.
[46]  Xiong, J., Piemontese, M., Onal, M., Campbell, J., Goellner, J.J., Dusevich, V., et al. (2015) Osteocytes, Not Osteoblasts or Lining Cells, Are the Main Source of the RANKL Required for Osteoclast Formation in Remodeling Bone. PLOS ONE, 10, e0138189.
https://doi.org/10.1371/journal.pone.0138189
[47]  Nakashima, T., Hayashi, M., Fukunaga, T., Kurata, K., Oh-hora, M., Feng, J.Q., et al. (2011) Evidence for Osteocyte Regulation of Bone Homeostasis through RANKL Expression. Nature Medicine, 17, 1231-1234.
https://doi.org/10.1038/nm.2452
[48]  Yuan, J., Gao, Y., Liu, D., Pang Tai, A.C., Zhou, H., Papadimitriou, J.M., et al. (2023) Pink1-Mediated Mitophagy Contributes to Glucocorticoid-Induced Cathepsin K Production in Osteocytes. Journal of Orthopaedic Translation, 38, 229-240.
https://doi.org/10.1016/j.jot.2022.11.003
[49]  Lotinun, S., Ishihara, Y., Nagano, K., Kiviranta, R., Carpentier, V.T., Neff, L., et al. (2019) Cathepsin K-Deficient Osteocytes Prevent Lactation-Induced Bone Loss and Parathyroid Hormone Suppression. Journal of Clinical Investigation, 129, 3058-3071.
https://doi.org/10.1172/jci122936
[50]  Weivoda, M.M., Youssef, S.J. and Oursler, M.J. (2017) Sclerostin Expression and Functions Beyond the Osteocyte. Bone, 96, 45-50.
https://doi.org/10.1016/j.bone.2016.11.024
[51]  Poole, K.E.S., Van Bezooijen, R.L., Loveridge, N., Hamersma, H., Papapoulos, S.E., Löwik, C.W., et al. (2005) Sclerostin Is a Delayed Secreted Product of Osteocytes That Inhibits Bone Formation. The FASEB Journal, 19, 1842-1844.
https://doi.org/10.1096/fj.05-4221fje
[52]  Piccoli, A., Cannata, F., Strollo, R., Pedone, C., Leanza, G., Russo, F., et al. (2020) Sclerostin Regulation, Microarchitecture, and Advanced Glycation End-Products in the Bone of Elderly Women with Type 2 Diabetes. Journal of Bone and Mineral Research, 35, 2415-2422.
https://doi.org/10.1002/jbmr.4153
[53]  Gaudio, A., Privitera, F., Battaglia, K., Torrisi, V., Sidoti, M.H., Pulvirenti, I., et al. (2012) Sclerostin Levels Associated with Inhibition of the Wnt/β-Catenin Signaling and Reduced Bone Turnover in Type 2 Diabetes Mellitus. The Journal of Clinical Endocrinology & Metabolism, 97, 3744-3750.
https://doi.org/10.1210/jc.2012-1901
[54]  Tanaka, K., Yamaguchi, T., Kanazawa, I. and Sugimoto, T. (2015) Effects of High Glucose and Advanced Glycation End Products on the Expressions of Sclerostin and RANKL as Well as Apoptosis in Osteocyte-Like MLO-Y4-A2 Cells. Biochemical and Biophysical Research Communications, 461, 193-199.
https://doi.org/10.1016/j.bbrc.2015.02.091
[55]  García-Martín, A., Rozas-Moreno, P., Reyes-García, R., Morales-Santana, S., García-Fontana, B., García-Salcedo, J.A., et al. (2012) Circulating Levels of Sclerostin Are Increased in Patients with Type 2 Diabetes Mellitus. The Journal of Clinical Endocrinology & Metabolism, 97, 234-241.
https://doi.org/10.1210/jc.2011-2186
[56]  Yu, O.H.Y., Richards, B., Berger, C., Josse, R.G., Leslie, W.D., Goltzman, D., et al. (2017) The Association between Sclerostin and Incident Type 2 Diabetes Risk: A Cohort Study. Clinical Endocrinology, 86, 520-525.
https://doi.org/10.1111/cen.13300
[57]  Schaffler, M.B. and Kennedy, O.D. (2012) Osteocyte Signaling in Bone. Current Osteoporosis Reports, 10, 118-125.
https://doi.org/10.1007/s11914-012-0105-4
[58]  Robling, A.G. and Bonewald, L.F. (2020) The Osteocyte: New Insights. Annual Review of Physiology, 82, 485-506.
https://doi.org/10.1146/annurev-physiol-021119-034332
[59]  Mulcahy, L.E., Taylor, D., Lee, T.C. and Duffy, G.P. (2011) RANKL and OPG Activity Is Regulated by Injury Size in Networks of Osteocyte-Like Cells. Bone, 48, 182-188.
https://doi.org/10.1016/j.bone.2010.09.014
[60]  Yang, X., Liu, C., Wang, Z., Ding, D., Shi, J., Wu, X., et al. (2021) Effects of Advanced Glycation End Products on Osteocytes Mechanosensitivity. Biochemical and Biophysical Research Communications, 568, 151-157.
https://doi.org/10.1016/j.bbrc.2021.06.074
[61]  Sakamoto, E., Kido, J., Takagi, R., Inagaki, Y., Naruishi, K., Nagata, T., et al. (2019) Advanced Glycation End-Product 2 and Porphyromonas gingivalis Lipopolysaccharide Increase Sclerostin Expression in Mouse Osteocyte-Like Cells. Bone, 122, 22-30.
https://doi.org/10.1016/j.bone.2019.02.001
[62]  Notsu, M., Kanazawa, I., Takeno, A., Yokomoto-Umakoshi, M., Tanaka, K., Yamaguchi, T., et al. (2017) Advanced Glycation End Product 3 (AGE3) Increases Apoptosis and the Expression of Sclerostin by Stimulating TGF-β Expression and Secretion in Osteocyte-Like MLO-Y4-A2 Cells. Calcified Tissue International, 100, 402-411.
https://doi.org/10.1007/s00223-017-0243-x
[63]  Chen, H., Liu, W., Wu, X., Gou, M., Shen, J. and Wang, H. (2017) Advanced Glycation End Products Induced IL-6 and VEGF-A Production and Apoptosis in Osteocyte-Like MLO-Y4 Cells by Activating RAGE and ERK1/2, P38 and STAT3 Signalling Pathways. International Immunopharmacology, 52, 143-149.
https://doi.org/10.1016/j.intimp.2017.09.004
[64]  Daniele, G., Guardado Mendoza, R., Winnier, D., Fiorentino, T.V., Pengou, Z., Cornell, J., et al. (2013) The Inflammatory Status Score Including IL-6, TNF-α, Osteopontin, Fractalkine, MCP-1 and Adiponectin Underlies Whole-Body Insulin Resistance and Hyperglycemia in Type 2 Diabetes Mellitus. Acta Diabetologica, 51, 123-131.
https://doi.org/10.1007/s00592-013-0543-1
[65]  Rachoń, D., Myśliwska, J., Suchecka‐Rachoń, K., Semetkowska‐Jurkiewicz, B., Zorena, K. and Łysiak‐Szydłowska, W. (2003) Serum Interleukin‐6 Levels and Bone Mineral Density at the Femoral Neck in Post‐Menopausal Women with Type 1 Diabetes. Diabetic Medicine, 20, 475-480.
https://doi.org/10.1046/j.1464-5491.2003.00953.x
[66]  Marahleh, A., Kitaura, H., Ohori, F., Kishikawa, A., Ogawa, S., Shen, W., et al. (2019) TNF-α Directly Enhances Osteocyte RANKL Expression and Promotes Osteoclast Formation. Frontiers in Immunology, 10, Article No. 2925.
https://doi.org/10.3389/fimmu.2019.02925
[67]  Takagi, M., Kasayama, S., Yamamoto, T., Motomura, T., Hashimoto, K., Yamamoto, H., et al. (1997) Advanced Glycation Endproducts Stimulate Interleukin-6 Production by Human Bone-Derived Cells. Journal of Bone and Mineral Research, 12, 439-446.
https://doi.org/10.1359/jbmr.1997.12.3.439
[68]  Jara, N., et al. (2012) Dietary Intake Increases Serum Levels of Carboxymethyl-lysine (CML) in Diabetic Patients. Nutrición Hospitalaria, 27, 1272-1278.
https://doi.org/10.3305/nh.2012.27.4.5861
[69]  Pacicca, D.M., Brown, T., Watkins, D., Kover, K., Yan, Y., Prideaux, M., et al. (2019) Elevated Glucose Acts Directly on Osteocytes to Increase Sclerostin Expression in Diabetes. Scientific Reports, 9, Article No. 17353.
https://doi.org/10.1038/s41598-019-52224-3
[70]  Sisay, M., Abdela, J. and Molla, Y. (2016) The Molecular Triad System Involving RANK/RANKL/OPG as Therapeutic Targets for Metabolic Bone Diseases. Journal of Drug Delivery and Therapeutics, 6, 31-39.
https://doi.org/10.22270/jddt.v6i6.1341
[71]  Diaz, M.C., et al. (2012) Gene Study (OPG, RANKL, Runx2 and AGE Receptors) in Human Osteoblast Cultures from Patients with Type 2 Diabetes Mellitus and Hip Fracture. Influence of Levels of Glucose and AGEs. Revista de Osteoporosis Y Metabolismo Mineral, 4, 7-14.
[72]  Kilhovd, B.K., Berg, T.J., Birkeland, K.I., Thorsby, P. and Hanssen, K.F. (1999) Serum Levels of Advanced Glycation End Products Are Increased in Patients with Type 2 Diabetes and Coronary Heart Disease. Diabetes Care, 22, 1543-1548.
https://doi.org/10.2337/diacare.22.9.1543
[73]  Kilhovd, B.K., Giardino, I., Torjesen, P.A., Birkeland, K.I., Berg, T.J., Thornalley, P.J., et al. (2003) Increased Serum Levels of the Specific Age-Compound Methylglyoxal-Derived Hydroimidazolone in Patients with Type 2 Diabetes. Metabolism, 52, 163-167.
https://doi.org/10.1053/meta.2003.50035
[74]  Kilhovd, B.K., Juutilainen, A., Lehto, S., Rönnemaa, T., Torjesen, P.A., Hanssen, K.F., et al. (2007) Increased Serum Levels of Advanced Glycation Endproducts Predict Total, Cardiovascular and Coronary Mortality in Women with Type 2 Diabetes: A Population-Based 18 Year Follow-Up Study. Diabetologia, 50, 1409-1417.
https://doi.org/10.1007/s00125-007-0687-z
[75]  Feng, L., et al. (2013) N-Epsilon-(carboxymethyl)lysine Is Unable to Induce Endothelial Dysfunction but Is Able to Attenuate AGEs-Induced Endothelium Damage in Human Umbilical Vein Endothelial Cells. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 68, 251-256.
[76]  Ramya, R., Coral, K. and Bharathidevi, S.R. (2021) RAGE Silencing Deters CML-AGE Induced Inflammation and TLR4 Expression in Endothelial Cells. Experimental Eye Research, 206, Article ID: 108519.
https://doi.org/10.1016/j.exer.2021.108519
[77]  Kislinger, T., Fu, C., Huber, B., Qu, W., Taguchi, A., Du Yan, S., et al. (1999) Nε-(carboxymethyl)lysine Adducts of Proteins Are Ligands for Receptor for Advanced Glycation End Products That Activate Cell Signaling Pathways and Modulate Gene Expression. Journal of Biological Chemistry, 274, 31740-31749.
https://doi.org/10.1074/jbc.274.44.31740
[78]  Li, G., Xu, J. and Li, Z. (2012) Receptor for Advanced Glycation End Products Inhibits Proliferation in Osteoblast through Suppression of Wnt, PI3K and ERK Signaling. Biochemical and Biophysical Research Communications, 423, 684-689.
https://doi.org/10.1016/j.bbrc.2012.06.015
[79]  Cortizo, A.M., Lettieri, M.G., Barrio, D.A., Mercer, N., Etcheverry, S.B. and McCarthy, A.D. (2003) Advanced Glycation End-Products (AGEs) Induce Concerted Changes in the Osteoblastic Expression of Their Receptor RAGE and in the Activation of Extracellular Signal-Regulated Kinases (ERK). Molecular and Cellular Biochemistry, 250, 1-10.
https://doi.org/10.1023/a:1024934008982
[80]  Hammes, H.P., et al. (1999) N(epsilon)(carboxymethyl)lysin and the AGE Receptor RAGE Colocalize in Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science, 40, 1855-1859.
[81]  Howes, K.A., Liu, Y., Dunaief, J.L., Milam, A., Frederick, J.M., Marks, A., et al. (2004) Receptor for Advanced Glycation End Products and Age-Related Macular Degeneration. Investigative Opthalmology & Visual Science, 45, 3713-3720.
https://doi.org/10.1167/iovs.04-0404
[82]  Naudí, A., Jové, M., Cacabelos, D., Ayala, V., Cabre, R., Caro, P., et al. (2012) Formation of S-(carboxymethyl)-Cysteine in Rat Liver Mitochondrial Proteins: Effects of Caloric and Methionine Restriction. Amino Acids, 44, 361-371.
https://doi.org/10.1007/s00726-012-1339-2
[83]  Eckhardt, B.A., Rowsey, J.L., Thicke, B.S., Fraser, D.G., O’Grady, K.L., Bondar, O.P., et al. (2020) Accelerated Osteocyte Senescence and Skeletal Fragility in Mice with Type 2 Diabetes. JCI Insight, 5, e135236.
https://doi.org/10.1172/jci.insight.135236

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133